

UDC 2300 Universal Digital Controller User Manual

51-52-25-83D 4/00

Contents

1	I	NTRODUCTION	. 1
	1.1	Overview	1
	1.2	CE Conformity (Europe)	2
2	ı	NSTALLATION	. 3
	2.1	Overview	3
	2.2	Preliminary Checks	3
	2.3	Control and Alarm Relay Contact Information	
	2.4	Mounting	7
	2.5	Wiring	9
	2.6	Wiring the Controller	11
	2.7	Initial Start-up	
	2.8	Operator Interface and Key Functions	18
3	(CONFIGURATION	19
	3.1	Overview	19
	3.2	Configuration Procedure	19
	3.3	Timer Set Up Group	22
	3.4	Tuning Set Up Group	23
	3.5	SP Ramp Set Up Group	25
	3.6	Accutune Set Up Group	27
	3.7	Algorithm Set Up Group	28
	3.8	Input 1 Set Up Group	29
	3.9	Input 2 Set Up Group	31
	3.10	Control Set Up Group	32
	3.11	Options Set Up Group	34
	3.12	Communications Set Up Group	35
	3.13	Alarms Set Up Group	37
4	(OPERATION	39
	4.1	Powering Up the Controller	39
	4.2	Monitoring Your Controller	39
	4.3	Single Display Functionality	42
	4.4	Start Up Procedure for Operation	44

	4.5	Setpoints	. 45
	4.6	Timer	. 46
	4.7	Accutune II	
	4.8	Fuzzy Overshoot Suppression	
	4.9	Using Two Sets of Tuning Constants	48
	4.10	Alarms	. 49
	4.11	Three Position Step Control Algorithm	. 50
		Setting a Failsafe Output Value for Restart After a Power Loss	
		Setting Failsafe Mode	
		Entering a Security Code	
		Lockout Feature	
		Background Tests	
	4.17	Restore Factory Calibration	. 57
5	5	SETPOINT RATE/RAMP/PROGRAM OPERATION	. 59
	5.1	Setpoint Rate	. 59
	5.2	Setpoint Ramp	. 59
	5.3	Setpoint Ramp/Soak Programming	61
6	A	APPENDIX A - ENVIRONMENTAL AND OPERATING CONDITIONS	. 67
7	Å	APPENDIX B - MODEL SELECTION GUIDE	. 69
8	A	APPENDIX C - CONFIGURATION RECORD SHEET	. 71

Tables

Table 2-1	Preliminary Checks	3
Table 2-2	Control Relay Contact Information	6
Table 2-3	Alarm Relay Contact Information	6
Table 2-4	Mounting Procedure	0
Table 2-5	Permissible Wiring Bundling	10
Table 2-6	Universal Output Functionality and Restrictions	10
Table 3-1	Configuration Procedure	21
Table 3-2	TIMER Group (Numeric Code 100) Function Prompts	22
Table 3-3	TUNING Group (Numeric Code 200) Function Prompts	23
Table 3-4	SPRAMP Group (Numeric Code 300) Function Prompts	25
Table 3-5	ATUNE Group (Numeric Code 400) Function Prompts	27
Table 3-6	ALGOR Group (Numeric Code 500) Function Prompts	
Table 3-7	INPUT1 Group (Numeric Code 600) Function Prompts	29
Table 3-8	INPUT2 Group (Numeric Code 700) Function Prompts	31
Table 3-9	CONTRL Group (Numeric Code 800) Function Prompts	32
Table 3-10	Options Group (Numeric Code 900) Function Prompts	34
Table 3-11		
Table 3-12	2 ALARMS Group (Numeric Code 1100) Function Prompts	37
Table 4-1	Annunciators	39
Table 4-2	Lower Display Key Parameter Prompts	40
Table 4-3	Error Messages	41
Table 4-4	Single Display Parameters	40
Table 4-5	Procedure for Starting Up the Controller	44
Table 4-6	Procedure for Switching Between Setpoints	45
Table 4-7	Set Up Procedure	48
Table 4-8	Procedure for Switching PID SETS from the Keyboard	48
Table 4-9	Procedure for Displaying Alarm Setpoints	49
Table 4-10	Procedure for Displaying 3Pstep Motor Position	50
Table 4-11		
Table 4-12		
Table 4-13	Procedure to Enter a Security Code	53
Table 4-14	0	
	Restore Factory Calibration	
	Running A Setpoint Ramp	
	Program Contents	62
Table 5-3	Run/Monitor Functions	66

Figures

Figure 1-1	UDC2300 Operator Interface	1
	Jumper Placements	5
Figure 2-2	Mounting Dimensions (not to scale)	7
Figure 2-3	Mounting Method	8
Figure 2-4	Composite Wiring Diagram	_11
Figure 2-5	Mains Power Supply	_12
Figure 2-6	Input 1 Connections	_12
	Input 2 Connections	_12
Figure 2-8	Electromechanical Relay Output	_13
Figure 2-9	Solid State Relay Output	_13
Figure 2-10	Open Collector Relay Output	_14
•	Current Output	_14
Figure 2-12	External Solid State Relay Option (Internal Open Collector Output)	_15
Figure 2-13	Three-Position Step Control Connections	_15
Figure 2-14	Alarm and Duplex Output Connections	_16
Figure 2-15	External Interface Option Connections	_16
Figure 2-16	Transmitter Power for 4-20 mA — 2 wire Transmitter Using Open Collector	
,	Alarm 2 Output (Model DC230B-XT-XX-XX-XXXXXXXX-XX-X)	_17
Figure 2-17	Transmitter Power for 4-20 mA — 2 Wire Transmitter Using Auxiliary Output	
((Model DC230B-XX-2X-XX-XXXXXXXXXXX-XX-X)	_17
Figure 2-18	Operator Interface and Key Functions	_18
	Prompt Hierarchy	_20
Figure 5-1	Ramp/Soak Profile Example	_64
Figure 5-2	Program Record Sheet	_65

1 Introduction

1.1 Overview

The UDC 2300 is a microprocessor-based stand-alone controller. It combines reliability and operating simplicity in a cost-effective 1/4-DIN size controller.

The UDC 2300 monitors and controls temperatures and other variables in applications such as environmental chambers, plastic processing machines, furnaces and ovens, and packaging machinery.

Its features include:

- Universal AC Power Supply,
- Input/Output Isolation,
- Isolated Auxiliary Current Output / Digital Input,
- Modbus and ASCII Communications,
- Timer.
- Accutune II Tuning with Fuzzy Logic Overshoot Suppression,
- 2nd Input (Remote Setpoint),
- Setpoint Ramp/Rate/Program,
- Three Position Step Control,
- Duplex (Heat/Cool).

The UDC 2300 is also downward compatible with existing UDC 2000 applications and installations **except** for RTD and 0-10 Volt inputs. See wiring diagrams in Section 2 - Installation.

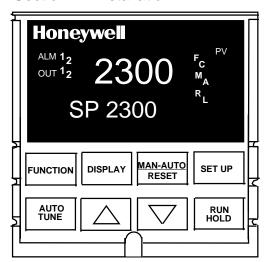


Figure 1-1 UDC2300 Operator Interface

1.2 CE Conformity (Europe)

This product is in conformity with the protection requirements of the following European Council Directives: **73/23/EEC**, the Low Voltage Directive, and **89/336/EEC**, the EMC Directive. Conformity of this product with any other "CE Mark" Directive(s) shall not be assumed.

Product Classification: Class I: Permanently connected, panel-mounted Industrial Control Equipment with protective earthing (grounding). (EN61010-1).

Enclosure Rating: Panel-mounted equipment, IP 00. This controller must be panel-mounted. Terminals must be enclosed within the panel. Front panel IP 65 (IEC 529).

Installation Category (Overvoltage Category): Category II: Energy-consuming equipment supplied from the fixed installation, local level appliances, and Industrial Control Equipment. (EN61010-1)

Pollution Degree: Pollution Degree 2: Normally non-conductive pollution with occasional conductivity caused by condensation. (Ref. IEC 664-1)

EMC Classification: Group 1, Class A, ISM Equipment (EN55011, emissions), Industrial Equipment (EN50082-2, immunity)

Method of EMC Assessment: Technical File (TF)

Declaration of Conformity: 51309602-000

Deviation from the installation conditions specified in this manual, and the special conditions for CE conformity in Section 2.1, may invalidate this product's conformity with the Low Voltage and EMC Directives.

2 Installation

2.1 Overview

Introduction

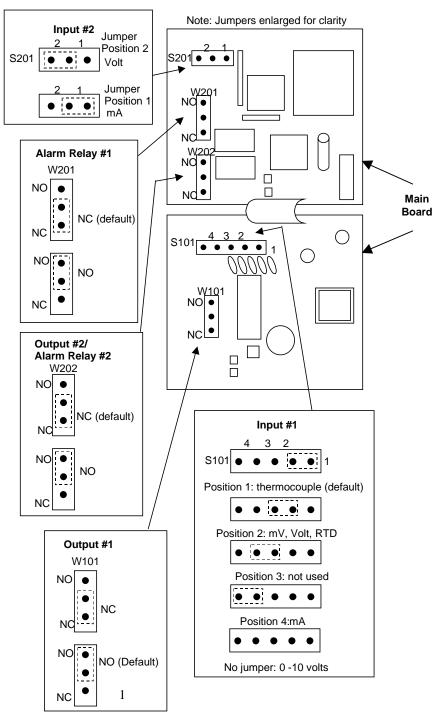
Installation of the UDC 2300 consists of mounting and wiring the controller according to the instructions given in this section. Read the pre-installation information, check the model number interpretation (Appendix B), and become familiar with your model selections, then proceed with installation.

2.2 Preliminary Checks

Introduction

Before you install the controller, remove the chassis and make any preliminary checks necessary that are listed in Table 2-1. Figure 2-1 shows the locations for jumper placements.

Table 2-1 Preliminary Checks


Check Number	Preliminary Check	Description
1	Input I Jumper Placement	Check the internal jumper for INPUT 1 to make sure it is set for the correct input type. The jumper is located at position S101 on the printed wiring board. Figure 2-1 shows the location of the jumper and position selections.
2	Optional Input 2 (RSP) Jumper Placement	Check the internal jumper for INPUT 2 to make sure it is set for the correct input type. The jumper is located at position S201 on the printed wiring board. Figure 2-1 shows the location of the jumper and position selections.
3	Control Relay 1 and Current Output	Check the internal jumper (W101) for CONTROL. The relay is shipped as N.O. (Normally Open). Figure 2-1 shows the location of the jumper and position selections.
		See Table 2-2 for Control Relay contact information.

Check Number	Preliminary Check	Description
4	Control Relay 2 and Alarm Relay Action.	The controller has been shipped with ALARM relays configured for N.C. (Normally Closed). If you want to change to N.O. refer to Figure 2-1, Jumper positions W201 and W202:
		W201 is the ALARM RELAY 1 jumper.
		W202 is the jumper for CONTROL RELAY #2 for Duplex Output or 3 position step control and an ALARM RELAY 2 for all others.
		See Table 2-2 for Control Relay contact information, and Table 2-3 for Alarm Relay contact information.
		See Alarm Relay Caution Note, Page 6.

Note: Solid State and open collector Outputs must have jumper set to N.O. (Normally Open).

3 Position Step and Time Duplex must have Output 2-jumper (W202) set to N.O (Normally Open).

Jumper Placements

1. For Current Output use the N.O. position

Figure 2-1 Jumper Placements

2.3 Control and Alarm Relay Contact Information

Control Relays

ATTENTION

Control relays operate in the standard control mode (that is, energized when output state is on).

Table 2-2 Control Relay Contact Information

Unit Power	Control Relay Wiring	Control Relay Contact	#1 or #2 Output Indicator Status
Off	N.O.	Open	Off
	N.C.	Closed	
On	N.O.	Open Closed	Off On
	N.C.	Closed Open	Off On

Alarm Relays

ATTENTION

Alarm relays are designed to operate in a Failsafe mode (that is, de-energized during alarm sate). This results in alarm actuation when power is OFF or when initially applied, until the unit completes self-diagnostics. If power is lost to the unit, the alarms will function.

Table 2-3 Alarm Relay Contact Information

Unit Power	Alarm Relay	Variable NOT in Alarm State		Variable in Alarm State	
	Wiring	Relay Contact	Indicators	Relay Contact	Indicators
Off	N.O.	Open	Off	Open	Off
	N.C.	Closed		Closed	
On	N.O.	Closed	Off	Open	On
	N.C.	Open		Closed	

2.4 Mounting

Physical Considerations

The controller can be mounted on either a vertical or tilted panel using the mounting kit supplied. Adequate access space must be available at the back of the panel for installation and servicing activities.

- The controller's mounting enclosure must be grounded according to CSA standard C22.2 No. 0.4 or Factory Mutual Class No. 3820 paragraph 6.1.5.
- The front panel is moisture rated NEMA 3/IP65 (IEC) when properly installed with panel gasket.

Overall Dimensions

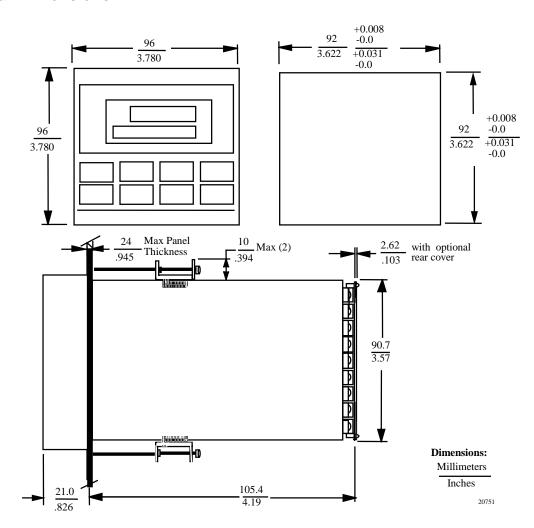


Figure 2-2 Mounting Dimensions (not to scale)

Mounting Method

Before mounting the controller, refer to the nameplate on the outside of the case and make a note of the model number. It will help later when selecting the proper wiring configuration.

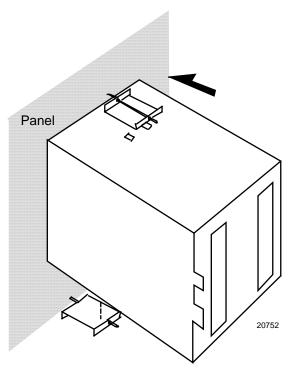


Figure 2-3 Mounting Method

Mounting Procedure

Table 2-4 Mounting Procedure

Step	Action				
1	Mark and cut out the controller hole in the panel according to the dimension information in Figure 2-2.				
2	Remove the screw cover and loosen the screw on the front of the controller. Pull the chassis out of the case.				
3	Orient the case properly and slide it through the panel hole from the front.				
4	Remove the mounting kit from the shipping container and install the kit as follows:				
	 Install the screws into the threaded holes of the clips. 				
	 Insert the prongs of the clips into the two holes in the top and bottom of the case. 				
	Tighten both screws to secure the case against the panel.				
	 Carefully slide the chassis assembly into the case, press to close, and tighten the screw. Replace the screw cover. 				

2.5 Wiring

Electrical Considerations

he controller is considered "rack and panel mounted equipment" per EN61010-1, afety Requirements for Electrical Equipment for Measurement, Control, and aboratory Use, Part 1: General Requirements. Conformity with 72/23/EEC, the ow Voltage Directive requires the user to provide adequate protection against a hock hazard. The user shall install this controller in an enclosure that limits PERATOR access to the rear terminals.

Mains Power Supply

This equipment is suitable for connection to 90 to 264 Vac, 50/60 Hz, power supply mains. It is the user's responsibility to provide a switch and non-time delay (North America), quick-acting, high breaking capacity, Type F (Europe), 1/2A, 250V fuse(s), or circuit-breaker, as part of the installation. The switch or circuit breaker shall be located in close proximity to the controller, within easy reach of the OPERATOR. The switch or circuit breaker shall be marked as the disconnecting device for the controller.

Controller Grounding

PROTECTIVE BONDING (grounding) of this controller and the enclosure in which it is installed shall be in accordance with National and Local electrical codes. To minimize electrical noise and transients that may adversely affect the system, supplementary bonding of the controller enclosure to a local ground, using a No. 12 (4 mm²) copper conductor, is recommended.

Control/Alarm Circuit Wiring

The insulation of wires connected to the Control/Alarm terminals shall be rated for the highest voltage involved. Extra Low Voltage (ELV) wiring (input, current output, and low voltage Control/Alarm circuits) shall be separated from HAZARDOUS LIVE (>30 Vac, 42.4 Vpeak, or 60 Vdc) wiring per Permissible Wiring Bundling, Table 2-5.

Electrical Noise Precautions

Electrical noise is composed of unabated electrical signals, which produce undesirable effects in measurements and control circuits.

Digital equipment is especially sensitive to the effects of electrical noise. Your controller has built-in circuits to reduce the effect of electrical noise from various sources. If there is a need to further reduce these effects:

 Separate External Wiring—Separate connecting wires into bundles (See Permissible Wiring Bundling - Table 2-5) and route the individual bundles through separate conduit metal trays. • Use Suppression Devices—For additional noise protection, you may want to add suppression devices at the external source. Appropriate suppression devices are commercially available.

ATTENTION

For additional noise information, refer to Document #51-52-05-01, How to Apply Digital Instrumentation in Severe Electrical Noise Environments.

Permissible Wiring Bundling

Table 2-5 Permissible Wiring Bundling

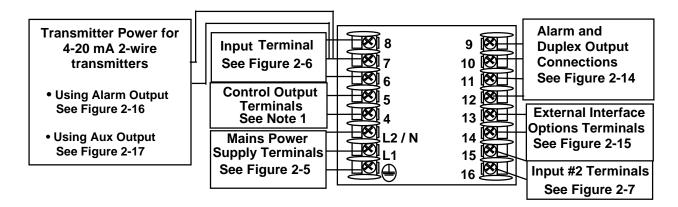
Bundle No.	Bundle No. Wire Functions		
1	Line power wiring		
	 Earth ground wiring 		
	 Control relay output wiring 		
	Line voltage alarm wiring		
2	Analog signal wire, such as:		
	 Input signal wire (thermocouple, 4 to 20 mA, etc.) 		
	 4-20 mA output signal wiring 		
	Digital input signals		
3	 Low voltage alarm relay output wiring 		
	 Low voltage wiring to solid state type control circuits 		

Universal Output Functionality and Restrictions

Table 2-6 Universal Output Functionality and Restrictions

	Output/Socket					
Output Type	Current Output	Relay #1	Relay #2	Relay #3	Auxiliary Output	
Time Simplex 1	N/I	Output 1	Alarm 2	Alarm 1	Not Needed	
Time Simplex 2	N/A	N/I	Output 1	Alarm 1	Not Needed	
Current Simplex	Output	N/I	Alarm 2	Alarm 1	Not Needed	
Time Duplex or TPSC	N/I	Output 1	Output 2	Alarm 1	Not Needed	
Current Dup. 100 %	Output 1	N/I	Alarm 2	Alarm 1	Not Needed	
Current Dup. 50 %	Output 1	N/I	Alarm 2	Alarm 1	Output 2	
Current/Time	Output 1	N/I	Output 2	Alarm 1	Not Needed	
Timer/Current	Output 2	N/I	Output 1	Alarm 1	Not Needed	

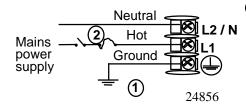
N/I = Not Installed


N/A = The output form or the individual output is Not Available or is not used for this output form.

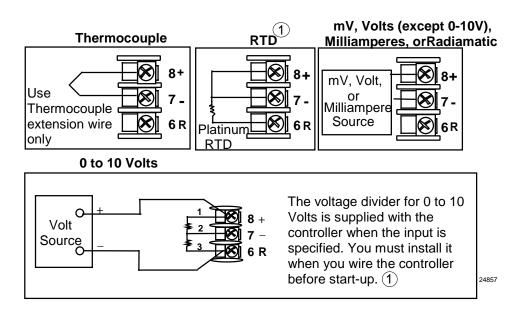
Not Needed = Auxiliary Output is not needed to provide the desired output function and can be used for another purpose. Auxiliary Output could also be used as a substitute for current Output 1.

2.6 Wiring the Controller

Using the information contained in the model number, select the appropriate wiring diagrams from the composite wiring diagram below. Refer to the individual diagrams listed to wire the controller according to your requirements.


Composite Wiring Diagram	11
Mains Power Supply	12
Input 1 Connections	12
Input 2 Connections	12
Relay Output	
Electromechanical	13
Solid State	13
Open Collector	14
Current Output Connections	14
External Solid State Relay Output Option	15
Three Position Step Control Connections	15
Alarm and Duplex Output Connections	16
External Interface Option Connections	16
Transmitter Power for 4-20mA – 2-Wire Transmitter	17
Using Open Collector Alarm 2 Output	
Transmitter Power for 4-20mA – 2-Wire Transmitter	17
Using Auxiliary Output	

NOTE1: Time Proportional Electromechanical Relay Output – See Figure 2-8
Time Proportional Solid State Relay Output – See Figure 2-9
Time Proportional Open Collector Output – See Figure 2-10
Current Output – See Figure 2-11
External Solid State Relay Output – See Figure 2-12
Three Position Step Control Output – See Figure 2-13


Figure 2-4 Composite Wiring Diagram

24855

- PROTECTIVE BONDING (grounding) of this controller and the enclosure in which it is installed, shall be in accordance with National and Local electrical codes. To minimize electrical noise and transients that may adversely affect the system, supplementary bonding of the controller enclosure to a local ground, using a No. 12 (4 mm²) copper conductor, is recommended. Before powering the controller, see "Preliminary Checks" in this section of the user manual for switch and jumper settings.
- ②Provide a switch and non-time delay (North America), quick-acting, high breaking capacity, type F (Europe), 1/2 A, 250 V fuse(s), or circuit-breaker as part of the installation.

Figure 2-5 Mains Power Supply

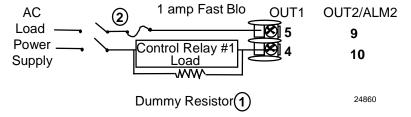
1)These inputs are wired differently than the UDC2000

Figure 2-6 Input 1 Connections

Figure 2-7 Input 2 Connections

1 Control relays 1 and 2 are configured N.O. as shipped. Alarm relays 1 and 2 are configured N.C. as shipped. N.O. or N.C. configurations are selectable by jumpers on the Main printed wiring boards.

See "Preliminary Checks" in this section of the

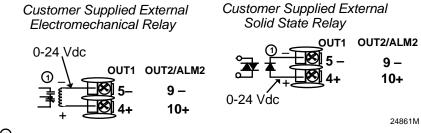

User Manual for details. Each SPST relay is rated at 5A, 120

Vac and 30 Vdc, 2.5 A 240 Vac. User-provided fuses should be sized accordingly. For solid state relay outputs, see Figure 2-12.

See Figure 2-14 for Alarm and Duplex Output Connections.

See Table 2-2 and Table 2-3 for Control and Alarm Relay Contact information.

Figure 2-8 Electromechanical Relay Output

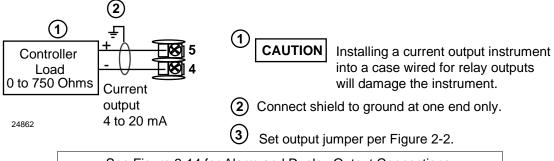


- 1 If the load current is less than the minimum rated value of 20 mA, there may be a residual voltage across both ends of the load even if the relay is turned off. Use a dummy resistor as shown to counteract this. The total current through the resistor and the load current must exceed 20 mA.
- 2 Solid State relay is rated at 1 Amp at 25°C, linearly derated to 0.5 Amp at 55°C. Customer should size fuse accordingly.

See Figure 2-14 for Alarm and Duplex Output Connections.

See Table 2-2 and Table 2-3 for Control and Alarm Relay Contact information.

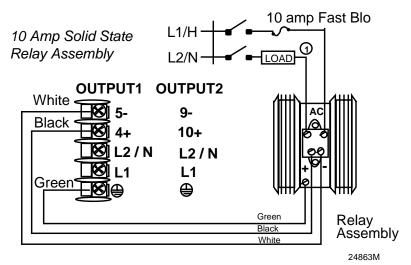
Figure 2-9 Solid State Relay Output


CAUTION

Open collector outputs are internally powered at 24 Vdc. Connecting an external supply will damage the controller. External relays should be fused between power and relay load.

See Figure 2-14 for Alarm and Duplex Output Connections.

See Tables 2-2 and 2-3 for Control and Alarm Relay Contact information.


Figure 2-10 Open Collector Relay Output

See Figure 2-14 for Alarm and Duplex Output Connections.

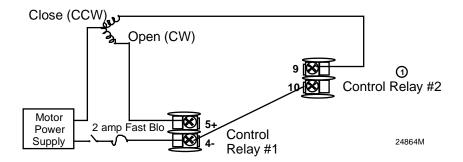
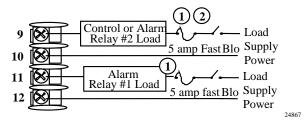

See Table 2-2 and Table 2-3 for Control and Alarm Relay Contact information.

Figure 2-11 Current Output

This Solid State relay is rated at 15 Amps at 25°C, linearly derated to 10 Amps at 55°C. Customer should size fuse accordingly


Figure 2-12 External Solid State Relay Option (Internal Open Collector Output)

① Alarm #2 is not available with Three Position Step Control.

See Figure 2-14 for Alarm and Duplex Output connections.

Figure 2-13 Three-Position Step Control Connections

- Control relays 1 and 2 are configured N.O. as shipped. Alarm relays 1 and 2 are configured N.C. as shipped. N.O. or N.C. configurations are selectable by jumpers on main printed wiring boards. See "Preliminar Checks" in this sections of the User Manual for details. Each SPST relay is rated at 5 A, 120 Vac and 30 Vdc, 2.5 A, 240 Vac.
- 2 Alarm #2 not available for Time Proportional Duplex or Three Position Step Control.

Figure 2-14 Alarm and Duplex Output Connections

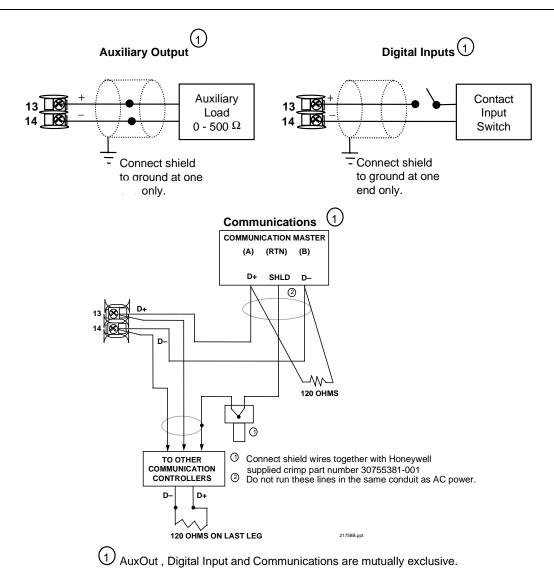
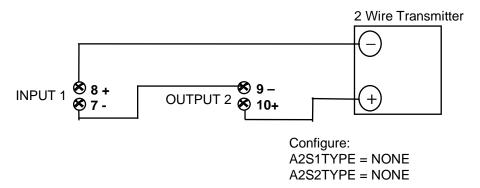
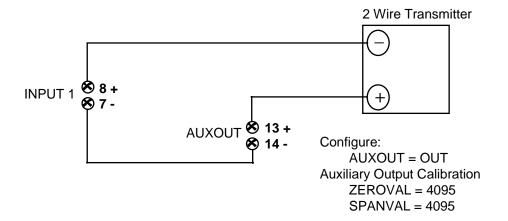




Figure 2-15 External Interface Option Connections

2.7 Initial Start-up

Overview

This section gives you the information necessary to start up your controller prior to configuration. Review the Operator Interface portion (Subsection 2.8) to make sure you are familiar with the indicator definitions and key functions.

Apply Power

When power is applied, the controller will run three diagnostic tests. After these tests are completed, "TEST DONE" is displayed.

Test Failures

If one or more of these tests fail, the controller will go to the Failsafe Manual Mode, and FAILSF will flash in the lower display and a message indicating which test failed will appear in the lower display. Then, "DONE" will appear in the lower display.

2.8 Operator Interface and Key Functions

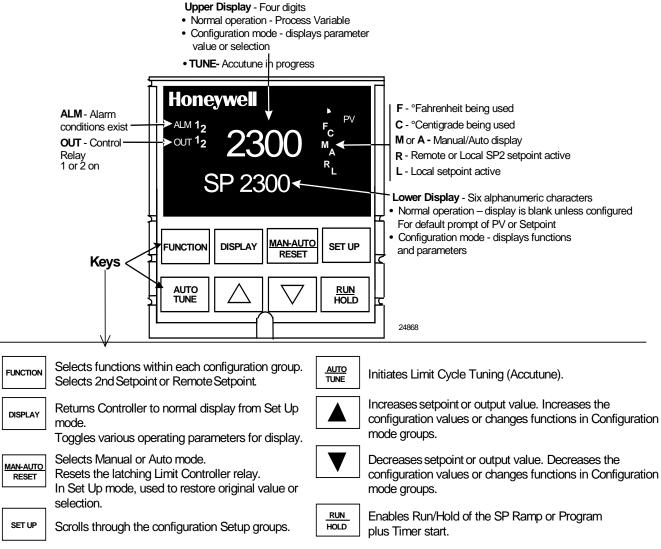


Figure 2-18 Operator Interface and Key Functions

Key Error Message

When a key is pressed and the prompt KEYERR appears in the lower display, it will be for one of the following reasons:

- parameter is not available,
- not in Set Up mode, press SET UP key first,
- key malfunction.

3 Configuration

3.1 Overview

Introduction

Configuration is a dedicated operation where you use straightforward keystroke sequences to select and establish (configure) pertinent control data best suited for your application.

To assist you in the configuration process, there are prompts that appear in the upper and lower displays. These prompts let you know what group of configuration data (Set Up prompts) you are working with and also, the specific parameters (Function prompts) associated with each group.

Figure 3-1 shows you an overview of the prompt hierarchy as they appear in the controller.

As you will see, the configuration data is divided into 11 main Set Up groups plus prompts for calibration and prompts that show the status of the continuous background tests that are being performed.

3.2 Configuration Procedure

Introduction

Each of the Set Up groups and their functions are pre-configured at the factory. The factory settings are shown in Table 3-2 through Table 3-12 that follow this procedure.

If you want to change any of these selections or values, follow the procedure in Table 3-1 Configuration Procedure. This procedure tells you the keys to press to get to any Set Up group and any associated Function parameter prompt.

Record your selections on the Configuration Record Sheet found in Section 8 – Appendix C.

Set Up Group Function Prompts TIMER PERIOD **START** L DISP **RESET** INCRMT **TIMER** CYC T1 PB or RATE T I MIN or MANRST PB 2 or RATE2T I2 MIN or TUNING I RPM I2 RPM **GAIN** GAIN 2 **CT1 X3** CYC2T2 **SECUR** LOCK **AUTOMA** A TUNE SP SL **RN HLD CT2 X3 SPRAMP SPRAMP** TI MIN **FINLSP** SPRATE **EUHRUP EUHRDN SPPROG** STRSEG **ENDSEG RPUNIT RECYCL SOKDEV PG END STATE ToBEGN PVSTRT** * x = 1 to 12. Program concludes after segment 12 SGx RP* SGxSP* SGx TI* **TUNE FUZZY** AT ERR **ATUNE** CTRALG OUTALG 4-20RG **RLY TYP** ALGOR **→** DECMAL UNITS **IN1TYP** XMITR1 IN1 LO IN1 HI RATIO1 BIAS 1 INPUT1 FILTR1 BRNOUT **EMISS DISPLY** LNGUAG **FREQ IN2TYP** XMITR2 IN2 HI IN2 LO RATIO2 BIAS 2 FILTR2 **INPUT2 PIDSET** SW VAL LSP'S RSP SRC **SP TRK PWR UP PWROUT** SP Hi CONTRL SP Lo ACTION **OUT Hi OUT Lo D BAND HYST FAILSF FSMODE PBorGN** MINRPM AUXOUT 0 PCT 100 PCT DIG IN DI COM **OPTIONS** SDENAB SHDTIM WS_FLT **TXDLY** ComSTA ComADD **PARITY BAUD** COM LOOPBK SDMODE SHD_SP UNITS **CSRATO** CSP_BI A1S1VA A1S2VA A2S1VA A2S2VA A1S1TY A2S1TY **ALARMS** A1S2TY A2S2TY A1S1HL A1S1EV A1S2HL A1S2EV A2S1HL A2S1EV A2S2HL A2S2EV ALHYST ALARM1 BLOCK

Figure 3-1 Prompt Hierarchy

STATUS

VERSON

FAILSF

TESTS

Procedure

ATTENTION

The prompting scrolls at a rate of 2/3 seconds when the **SET UP** or **FUNCTION** key is held in. Also, $[\blacktriangle]$ [\blacktriangledown] keys will move group prompts forward or backward at a rate twice as fast.

Table 3-1 Configuration Procedure

Step	Operation	Press	Result
1	Enter Set Up	SET UP	Upper Display = SET
	Mode		Lower Display = TIMER (This is the first Set Up Group title)
2	Select any Set Up Group	SET UP	Sequentially displays the other Set Up group titles.
	CP C. Cup		You can also use the [▲] [▼] keys to scan the Set Up groups in both directions. Stop at the Set Up group title that describes the group of parameters you want to configure. Then proceed to the next step.
3	Select a Function	FUNCTION	Upper Display = the current value or selection for the first function prompt of the selected Set Up group.
	Parameter		Lower Display = the first Function prompt within that Set Up group.
			Sequentially displays the other function prompts of the Set Up group you have selected. Stop at the function prompt that you want to change, then proceed to the next step.
4	Change the Value or Selection	[▲] [▼]	Increments or decrements the value or selection that appears for the selected function prompt. If you change the value or selection of a parameter while in Set Up mode then decide not to enter it, press [MAN-AUTO/RESET] once—the original value or selection is recalled.
5	Enter the Value or Selection	FUNCTION	Enters value or selection made into memory after another key is pressed.
6	Exit Configuration	DISPLAY	Exits configuration mode and returns controller to the same state it was in immediately preceding entry into the Set Up mode. It stores any changes you have made. If you do not press any keys for 30 seconds, the controller times out and reverts to the mode and display used prior to entry into Set Up mode.

3.3 Timer Set Up Group

Introduction

The Timer Set Up group allows you to configure a time-out period and to select the timer start by either the keyboard (**RUN/HOLD** key) or Alarm 2. The optional digital input can also be configured to start the timer. The timer display is selectable as either "time remaining" (see TREM) or "elapsed time" (see ET).

Alarm 1 is activated at the end of the time-out period. When the timer is enabled, it has exclusive control of the alarm 1 relay—any previous alarm 1 configuration is ignored. At time-out, the timer is ready to be activated again by whatever action has been configured.

Table 3-2 TIMER Group (Numeric Code 100) Function Prompts

Pron	npt	Description	Selection	on or Range of Setting	Factory	
English	Numeric Code		Numeric Code	English	Setting	
TIMER	101	Enable or Disable Timer	0	DIS ENAB	DIS	
PERIOD	102	Time-out Period		0:00 to 99:59 Select length of time in Hours and Minutes, or Minutes and Seconds.	0:01	
START	103	Timer Function Start	0 1	KEY (Run/Hold key) AL2 (Alarm 2)	KEY	
L DISP	104	Timer Display	0 1	TREM (time remaining) ET (elapsed time)	TREM	
RESET	105	Timer Reset Control	0 1	KEY (Run/Hold key) AL1 (Alarm 1 or Key)	KEY	
INCRMT	106	Timer Count Increment	0	MIN (Counts HR/MIN) SEC (Counts MIN/SEC)	MIN	

3.4 Tuning Set Up Group

Introduction

Tuning consists of establishing the appropriate values for the tuning constants you are using so that your controller responds correctly to changes in process variable and setpoint. You can start with predetermined values but you will have to watch the system to see how to modify them. The Accutune feature automatically selects Gain, Rate, and Reset on demand.

ATTENTION

Because this group contains functions that have to do with security and lockout, we recommend that you configure this group last, after all other configuration data has been loaded.

Function Prompts

Table 3-3 TUNING Group (Numeric Code 200) Function Prompts

Pror	npt	Description	Selection	Selection or Range of Setting		
English	Numeric Code		Numeric Code	English	Setting	
PB or GAIN	201	Proportional Band or Gain		PB = 0.1 to 1000 % Gain = 0.01 to 1000	1.0	
RATE T	202	Rate in Minutes		0.00 to 10.00 minutes 0.08 or less = OFF	0.00	
I MIN	203	Reset in minutes/repeat		0.02 to 50.00	1.0	
or I RPM		Reset in repeats/minute		0.02 to 50.00	1.0	
MANRST	204	Manual Reset		-100 to 100 % Output	0.0	
PB 2 or GAIN 2	205	Proportional Band 2 or Gain 2		PB = 0.1 to 1000 % Gain = 0.01 to 1000	1.0	
RATE2T	206	Rate 2 in Minutes		0.00 to 10.00 minutes 0.08 or less = OFF	0.00	
I2 MIN or	207	Reset in minutes/repeat		0.02 to 50.00	1.0	
I2 RPM		Reset in repeats/minute		0.02 to 50.00	1.0	

Table continued next page

Table 3-3 TUNING Group (Numeric Code 200) Function Prompts, continued

Pro	mpt	Description	Selection	Selection or Range of Setting		
English	Numeric Code		Numeric Code	English	Setting	
CYC T1 or CT1X3	208	Cycle Time (Heat) Cycle times are in either second or 1/3 second increments depending upon the configuration of RLY TYP in the "Algorithm" Set Up group.		1 to 120	20	
CYC2T2 or CT2 X3	209	Cycle Time (Cool) Cycle times are in either second or 1/3 second increments depending upon the configuration of RLY TYP in the "Algorithm" Set Up group.		1 to 120	20	
SECUR	210	Security Code		0 to 4095	0	
LOCK	211	Lockout	0 1 2 3 4	NONE CAL CONF VIEW ALL	CAL	
AUTOMA	212	Auto/Manual Key Lockout	0 1	DIS ENAB	ENAB	
A TUNE	213	Autotune Key Lockout	0 1	DIS ENAB	ENAB	
RN HLD	214	Run/Hold Key Lockout	0 1	DIS ENAB	ENAB	
SP SEL	215	Setpoint Select Function Lockout	0 1	DIS ENAB	ENAB	

3.5 SP Ramp Set Up Group

Introduction

A *single setpoint ramp* [**SPRAMP**] can be configured to occur between the current local setpoint and a final local setpoint over a time interval of from 1 to 255 minutes.

SPRATE lets you configure a *specific rate of change* for any local setpoint change.

You can also configure a 12-segment program from a Ramp/Soak profile.

You can start and stop the ramp/program using the **RUN/HOLD** key.

PV Hot Start is standard and means that at power up, the setpoint is set to the current PV value and the Ramp or Rate or Program then starts from this value.

Table 3-4 SPRAMP Group (Numeric Code 300) Function Prompts

Pror	npt	Description	Select	Factory	
English	Numeric Code		Numeric Code	English	Setting
SP RAMP	301	Single Setpoint Ramp Rate and Program must be disabled	0 1	DIS ENAB	DIS
TI MIN	301	Single Setpoint Ramp Time		0 to 255 Minutes	3
FINLSP	302	Setpoint Ramp Final Setpoint		Enter a value within the setpoint limits	1000
SPRATE	304	Setpoint Rate Ramp and Program must be disabled	0 1	DIS ENAB	DIS
EUHRUP	305	Rate Up		0 to 9999 in Engineering units per hour	0
EUHRDN	306	Rate Down		0 to 9999 in Engineering units per hour	0
SPPROG	307	Setpoint Ramp/Soak Programming Rate and Ramp must be disabled	0 1	DIS ENAB	DIS
STRSEG	308	Start Segment Number		1 to 11	
				Table continued next page	

Pron	npt	Description	Selection or Range of Setting		Factory
English	Numeric Code		Numeric Code	English	Setting
ENDSEG	309	End Segment Number	2 4 6 8 10 12	2 to 12 (always end in a soak segment 2, 4,12) SOK 2 SOK4 SOK6 SOK8 SOK10 SOK12	0
RPUNIT	310	Engineering units for Ramp Segments	0 1 2	TIME (hours:minutes) EU-M (Rate EU/Minute) EU-H (Rate EU/Hour)	TIME
RECYCL	311	Number of Program Recycles		0 to 99 recycles	
SOKDEV	312	Guaranteed Soak Deviation Value		0 to 99 0 = No Soak	
PG END	313	Program Termination State	0 1	LAST (Hold at last SP) FSAF (Manual mode/Failsafe)	
STATE	314	Program State at Program End	0 1	DIS HOLD	DIS
ToBEGN	315	Reset Program to the Beginning	0 1	DIS KEY (Keyboard)	DIS
PVSTRT	316	Program starts at PV value	0 1	DIS ENAB	DIS
SGx RP SG1 SG3 SG5 SG7 SG9 SG11	317 320 323 326 329 332	Segment Ramp or Rate Time x = 1 through 11		0-99hours:0-59minutes Engineering Units/minute or Engineering Units /hour	
SGx SP SG2 SG4 SG6 SG8 SG10 SG12	318 321 324 327 330 333	Segment Soak Setpoint Value x = 2 through 12	Enter a Value within the Setpoint Limits		
SGx TI SG2 SG4 SG6 SG8 SG10 SG12	319 322 325 328 331 334	Segment Soak Duration x = 2 through 12	0-99 Hours: 0-59 Minutes		

3.6 Accutune Set Up Group

Introduction

Accutune II automatically calculates GAIN, RATE, and RESET TIME (PID) tuning constants for your control loop. When initiated on demand, the Accutune algorithm measures a process step response and automatically generates the PID tuning constants needed for no overshoot on your process.

Fuzzy Overshoot Suppression, when enabled, will suppress or eliminate any overshoot that may occur as a result of the existing tuning parameters, as the PV approaches the setpoint.

Table 3-5 ATUNE Group (Numeric Code 400) Function Prompts

Prompt		Description	Selection	Factory	
English	Numeric Code		Numeric Code	English	Setting
FUZZY	401	Fuzzy Overshoot Suppression	0 1	DIS ENAB	DIS
TUNE	402	Demand Tuning	0 1	DIS TUNE	TUNE
AT ERR	403	Accutune Error Codes (Read Only)	0 3 4 5	NONE IDFL ABRT RUN	

3.7 Algorithm Set Up Group

Introduction

This data deals with various algorithms in the controller: Control algorithm, Output algorithm, Current Duplex Range, and Relay Cycle Time Increment.

Table 3-6 ALGOR Group (Numeric Code 500) Function Prompts

Pror	npt	Description	Select	Factory	
English	Numeric Code		Numeric Code	English	Setting
CTRALG	501	Control Algorithm	0 1 2 3 4	ONOF PIDA PIDB PDMR TPSC (3 position step)	PIDA
OUTALG	502	Output Algorithm	0 1 2 3 4 5 6 7	RLY (Time simplex Relay 1) RLY2 (Time simplex Relay 2) CUR (Current simplex) TPSC (3 Position step) RLYD (Time duplex) CURD (Current duplex) CURT (Current/time duplex) TCUR (Time/current duplex)	depends on model
4-20RG	503	Current Duplex Range	0 1	100 (Full) 50 (Split)	100
RLY TYP	504	Relay Cycle Time Increment	0 1	MECH (one sec. increments) S S (1/3 sec increments)	MECH

3.8 Input 1 Set Up Group

Table 3-7 INPUT1 Group (Numeric Code 600) Function Prompts

npt	Description	Selec	tion or Ra	Factory		
Numeric Code		Numeric Code		English		Setting
601	Decimal Point Selection	0 1 2	8888 (no 888.8 88.88	ne)		8888
602	Temperature Units	1 2 0	F C NONE			F
		Numeric	English	Numeric	English	
603	Input 1 Actuation Type	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	B ELJL KL NNML N90L NIC RS TL	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33	W H W L 100H 100L 200 500 RADH RADI 0-20 4-20 10m 50m 0-5 1-5 0-10 100m	КН
604	Transmitter Characterization	0 1 2 3 4 5 6 7 8 9 10 11	B EH EL JH JL KH KL NNMH NNML N90H N90L NIC	13 14 15 16 17 18 19 20 21 22 23 24	S TH TL WH WL 100H 100L 200 500 RADH RADI LIN	LIN
	601 602	Numeric Code 601 Decimal Point Selection 602 Temperature Units 603 Input 1 Actuation Type 604 Transmitter	Numeric Code	Numeric Code	Numeric Code Decimal Point Selection 0 8888 (none) 601 Decimal Point Selection 0 8888 (none) 602 Temperature Units 1 F Composition None Numeric English Numeric 603 Input 1 Actuation Type 1 B 17 2 E H 18 19 4 J H 20 5 J L 21 6 K H 22 7 K L 23 8 NNMH 24 9 NNML 25 10 N90H 26 11 N90L 27 12 NIC 28 13 R 29 14 S 30 15 T H 31 16 T L 33 Numeric English Numeric 604 Transmitter Characterization 0 B 13 1 E H 14 14 14 14 14 14 <	Numeric Code

Table 3-7 INPUT1 Group (Numeric Code 600) Function Prompts, continued

Pror	npt	Description	Selectio	Factory	
English	Numeric Code		Numeric Code	English	Setting
IN1 HI	605	Input 1 High Range Value		-999 to 9999 floating in engineering units	2400
IN1 LO	606	Input 1 Low Range Value		-999 to 9999 floating in engineering units	0
RATIO1	607	Ratio on Input 1		-20.0 to 20.0	1.00
BIAS 1	608	Bias on Input 1		-999 to 9999	0.0
FILTR1	609	Filter for Input 1		0 to 120 seconds 0 = No Filter	1.0
BRNOUT	610	Burnout Protection (Sensor Break)	0 1 2 3	NONE UP (Upscale) DOWN (Downscale) NOFS (No Failsafe)	UP
EMISS	611	Emissivity		0.01 to 1.00 (RADH & RADI only)	1.0
FREQ	612	Power Line Frequency	0 1	60 50	60
DISPLY	613	Default Display (Single Display models only)	0 1 2	SP (Setpoint) PRY (PV with Label) PRN (PV without Label)	PRN
LNGUAG	614	Language Selection	0 1 2 3 4 5	ENGL FREN GERM SPAN ITAL NUMB (Numeric)	ENGL

3.9 Input 2 Set Up Group

Table 3-8 INPUT2 Group (Numeric Code 700) Function Prompts

Pron	npt	Description	Selec	Selection or Range of Setting			
English	Numeric Code		Numeric Code		English		Setting
IN2TYP	701	Input 2 Type	0 25 26 29 30 34	DIS 0-20 (mA 4-20 (mA 0-5 (Volts 1-5 (Volts 0-2 (Volts	.) s) s)		1-5V
			Numeric	English	Numeric	English	
XMITR2	702	Transmitter Characterization for Input 2	0 1 2 3 4 5 6 7 8 9 10 11 12 Numeric Code	B EH JH JL KH KL NNMH N90H N90L NIC R	13 14 15 16 17 18 19 20 21 22 23 24 25 English	S TH TL WH WL 100H 100L 200 500 RADH RADI LIN SrT	LIN
IN2 HI	703	Input 2 High Range Value		-999 to 9999 floating in engineering units		2400	
IN2 LO	704	Input 2 Low Range Value		-999 to 9999 floating in engineering units		0	
RATIO2	705	Ratio on Input 2		-20.0 to 2	20.0		1.00
BIAS 2	706	Bias on Input 2		-999 to 99	99		0.0
FILTR2	707	Filter for Input 2		0 to 120 s 0 = No Filt			1.0

3.10 Control Set Up Group

Introduction

The functions listed in this group deal with how the controller will control the process including: Number of Tuning Parameter Sets, Setpoint Source, Tracking, Power-up Recall, Setpoint Limits, Output Direction and Limits, Deadband, and Hysteresis.

Function Prompts

Table 3-9 CONTRL Group (Numeric Code 800) Function Prompts

Pro	mpt	Description	Sele	ction or Range of Setting	Factory
English	Numeric Code		Numeric Code	English	Setting
PIDSET	801	Number of Tuning Parameter Sets	0 1 2 3	ONE 2KBD (Keyboard) 2 PR (PV switch) 2 SP (SP switch)	ONE
SW VAL	802	Automatic Switchover Value		Value in engineering units within PV or SP range limits	0.00
LSP'S	803	Local Setpoint Source	0 1	ONE TWO	ONE
RSPSRC	804	Remote Setpoint Source	0 1	NONE INP2	NONE
SP TRK	805	Setpoint Tracking	0 1 2	NONE PROC (LSP tracks PV– manual) RSP (LSP tracks RSP–auto)	NONE
PWR UP	806	Power Up Controller Mode Recall	0 1 2 3 4	MAN (Manual/LSP/Failsafe) ALSP (Auto/last LSP) ARSP (Auto/last RSP) AMSP (Last mode/last SP) AMLS (Last mode/last LSP)	ALSP
PWROUT	807	TPSC (Three Position Step Control) Output Start-up Mode	0 1	LAST (Last output) FSAF (Failsafe output)	LAST
SP Hi	808	Setpoint High Limit		0 to 100 % of the PV range	2400
SP Lo	809	Setpoint Low Limit		0 to 100 % of the PV range	0
ACTION	810	Control Output Direction	0 1	DIR REV	REV

Table continued next page

Table 3-9 CONTRL Group (Numeric Code 800) Function Prompts, continued

Pron	npt	Description	Selec	ction or Range of Setting	Factory
English	Numeric Code		Numeric Code	English	Setting
OUT Hi	811	High Output Limit		-5 to 105 % of Output (Current)	100
				0.0 to 100.0 % of Output (Relay)	
OUT Lo	812	Low Output Limit		-5 to 105 % of Output (Current)	0
				0.0 to 100.0 % of Output (Relay)	
D BAND	813	Deadband		-5 to 25.0 % (Time Duplex)	2.0
				0.5 to 5.0 % (3 position step)	
HYST	814	Hysteresis (Output Relay Only)		0.0 to 100.0 % of PV	0.5
FAILSF	815	Failsafe Output		0 to 100 %	0.0
	816	Value	0 1	For 3 Position Step 0 (Closed position) 100 (Open position)	
FSMODE	817	Failsafe Mode	0	No L (Mode does not clear	NO_L
			1	once unit goes to FS Output) LACH (Unit goes to manual and FS output)	
PBorGN	818	Proportional Band Units	0 1	GAIN PB	GAIN
MINRPM	819	Reset Units	0 1	MIN RPM	MIN

3.11 Options Set Up Group

Function Prompts

Table 3-10 Options Group (Numeric Code 900) Function Prompts

Pror	npt	Description	Selec	tion or Range of Setting	Factory
English	Numeric Code		Numeric Code	English	Setting
AUXOUT	901	Auxiliary Output	0 1 2 3 4 5 6 7	DIS Disabled IN1 Input 1 IN2 Input 2 PROC Process Variable DEV Deviation OUT Output SP Setpoint LSP1 Local Setpoint 1	DIS
0 PCT	902	Auxiliary Output Low Scaling Factor		Value in Engineering Units	0
100 PCT	903	Auxiliary Output High Scaling Factor		Value in Engineering Units	100
DIG IN	904	Digital Input	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	None MAN To Manual LSP To Local SP 1 SP2 To Local SP 2 DIR Direct Control HOLD Hold SPP/SP Ramp PID2 PID Set 2 RUN Start a stopped SPP/SP Ramp Begn SPP Reset NO I Inhibit Integral MNFS Manual, Failsafe Output LOCK Keyboard Disable TIMR Start Timer TUNE Start Tune INIT Init SP to PV RSP Remote SP MNLT Latching Manual TRAK Output tracks Input 2	NONE
DI COM	905	Digital Input Combinations	0 1 2 3 4 5	DIS Disabled + PD2 PID Set 2 +DIR Direct +SP2 Set Point 2 +SP1 Set Point 1 +RUN Start SPP	DIS

3.12 Communications Set Up Group

Function Prompts

Table 3-11 Communications Group (Numeric Code 1000)

Pro	mpt	Description	Selec	ction or Range of Setting	Factory
English	Numeric Code		Numeric Code	English	Setting
COMSTA	1001	Communications State	0 1 2	DIS Disabled R422 RS-422/485 MODB Modbus	DIS
ComADD	1002	Station Address		1 to 99	0
SDENAB	1003	Disable/Enable for Shed function	0 1	DIS Disable ENAB Enable	ENAB
				Note: If Control Algorithm is 3 Position Step Control then this must be enabled.	
SHDTIM	1004	Shed Time		0 to 255 Sample Periods	0
PARITY	1005	Parity	0 1	Odd Even	Odd
BAUD	1006	Baud Rate	0 1 2 3	2400 Baud 4800 Baud 9600 Baud 19200 Baud	2400
TX_DLY	1007	Response Delay		1 to 500 milliseconds	1
WS_FLT	1008	Word/Byte Order for floating point communications data		Byte Contents 0 seeeeeee 1 emmmmmmm 2 mmmmmmmm 3 mmmmmmmmm	FP_B
			0 1 2 3	Choice Byte Order FP_B 0123 FPBB 1032 FP_L 3210 FPLB 2301	
SDMODE	1009	Shed Output Mode	0 1	LAST Same Mode & Output Man_ Manual Mode, Same Output	LAST
			2	FSAF Man Mode, Failsafe	
			3	Output AUTO Auto Mode, Failsafe Output	

Proi	mpt	Description	Selec	ction or Range of Setting	Factory
English	Numeric Code		Numeric Code	English	Setting
SHD_SP	1010	Shed Setpoint Recall	0	LSP Last Local or remote used CSP last Computer Setpoint	LSP
UNITS	1011	Communications Override Units	0 1	PCT Percent Eng Engineering Units	PCT
CSRATIO	1012	Computer Setpoint Ratio		-20.0 to 20.0	1.0
CSP_BI	1013	Computer Setpoint Bias		-999 to 9999 in Engineering Units	0
LOOPBK	1014	Local Loopback Test	0 1	DIS Disable EnAB Enable	DIS

3.13 Alarms Set Up Group

Function Prompts

Table 3-12 ALARMS Group (Numeric Code 1100) Function Prompts

Pron	npt	Description	Sel	ection or Range of Setting	Factory
English	Numeric Code		Numeric Code	English	Setting
AxSxVA A1S1 A1S2 A2S1 A2S2	1101 1102 1103 1104	Alarm Setpointx Value X = 1 or 2		within the range of the selected parameter or of the PV Span for Deviation configurations	90
AxSxTY	1105 1106 1107 1108	Alarmx Setpointx Type X = 1 or 2	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	NONE No Alarm IN 1 Input 1 IN 2 Input 2 PROC Process Variable DE Deviation OUT Output SHED Shed Communications E-ON Event ON(SP Prog) E-OF Event OFF(SP Prog) MAN Alarm on Manual RSP Remote Setpoint FSAF Failsafe PrRT PV Rate of Change DI Alarm on Digital Input DE 11 DEV Alarm SP2 based BRAK Loop break alarm	NONE
AxSxHL A1S1 A1S2 A2S1 A2S2	1109 1110 1111 1112	Alarmx Setpoint State X = 1 or 2	0 1	LOW Low Alarm HIGH High Alarm	HIGH
AxSxEV A1S1 A1S2 A2S1 A2S2	1109 1110 1111 1112	Alarmx Segment Event x X = 1 or 2	0 1	BEGN Beginning of Segment END End of Segment	BEGN
ALHYST	1113	Alarm Hysteresis		0.0 to 100.0 % of span or full output as appropriate	0.0
ALARM1	1114	Latching Alarm Output	0 1	NO L LACH	NO L
BLOCK	1115	Alarm Blocking	0 1 2 3	DIS Disable Blocking BK1 Block Alarm 1 only BK2 Block Alarm 2 only BK12 Blocks both Alarms	DIS

4 Operation

4.1 Powering Up the Controller

Apply Power

When power is applied, the controller will run three diagnostic tests. After these tests are completed, "TEST DONE" is displayed.

Test Failures

If one or more of these tests fail, the controller will go to the Failsafe Manual Mode, and FAILSF will flash in the lower display and a message indicating which test failed will appear in the lower display. Then, "DONE" will appear in the lower display.

4.2 Monitoring Your Controller

Annunciators

The following annunciator functions have been provided to help monitor the controller:

Table 4-1 Annunciators

Annunciator	Indication
ALM 1 2	A visual indication of each alarm
	Blinking 1 indicates alarm latched and needs to be acknowledged before extinguishing when the alarm condition ends
OUT 1 2	A visual indication of the control relays
A or M	A visual indication of the mode of the controller
	A—Automatic Mode M—Manual Mode
F or C	A visual indication of the temperature units
	F—Degrees Fahrenheit C—Degrees Celsius
L or R	A visual indication of setpoint being used
	L— Local Setpoint is active R— RSP or LSP 2 is active
	The upper display is used to show other annunciator functions TUNE—Accutuning in progress RUN—SP Program in progress HOLD—SP Program on hold CSP—Controlling to the Computer Setpoint LOOPBK—Loopback test running

Viewing the operating parameters

Press the **DISPLAY** key to scroll through the operating parameters listed in Table 4-2. The lower display will show only those parameters and their values that apply to your specific model.

Table 4-2 Lower Display Key Parameter Prompts

Lower Display	Description
ОТ	OUTPUT—Output value is percent; for Three Position Step control, this is an estimated motor position when no slidewire exists.
SP	LOCAL SETPOINT #1—Also current setpoint when using SP Ramp.
2L	LOCAL SETPOINT #2
RS	REMOTE SETPOINT
2ND	INPUT 2
DE	DEVIATION—Maximum negative display is -999.9.
PIDSX	TUNING PARAMETER SELECTED SET—where X is either 1 or 2.
√ □ □.□□	TIME REMAINING—Time that remains on timer in Hours:Minutes
<u> 1</u> □.□□	ELAPSED TIME—Time that has elapsed on timer in Hours:Minutes.
RPXXXM	SETPOINT RAMP TIME—Time remaining in the setpoint ramp in minutes.
AX	AUXILIARY OUTPUT
Sn	SP RATE SETPOINT—Current setpoint for setpoint rate applications
ВІ	BIAS—Displays the manual reset value for algorithm PD+MR.
To BGn	TO BEGIN—Resets Setpoint Program back to beginning of the program.

Diagnostic Error Messages

The UDC2300 performs background tests to verify data and memory integrity. If there is a malfunction, an error message will be displayed. In the case of more than one simultaneous malfunction, the messages will be displayed sequentially on the lower display.

Table 4-3 Error Messages

Prompt	Description
EE FAIL	Unable to write to nonvolatile memory.
IN1FL	Two consecutive failures of input 1 integration.
IN2FL	Two consecutive failures of input 2 integration.
CFGERR	Configuration Errors—Low limit greater than high limit for PV, SP, Reset, or Output.
IN1RNG	Input 1 Out-of-Range
IN2RNG	Input 2 Out-of-Range—Same as Input 1.
PV LIM	PV Out-of-Range PV = (PV source x PV source ratio) + PV source bias
FAILSF	Failsafe—Check inputs or configuration.
RV LIM	Remote Variable Out-of-Range RV = (RV source x RV source ratio) + RV source bias
SEG ERR	Segment Error—SP Program starting segment number is less than ending segment number.
LOCK	The Lockout feature has been enabled to prevent unauthorized changes of certain functions or parameters.

4.3 Single Display Functionality

Introduction

A UDC2300 instrument, which has been configured with a '0' for software options (i.e., DC230x-xx-x0-xx), will only have a single display capability. This means that the displayed value of PV, Setpoint, Setpoint2, Remote Setpoint, Input 2, Output, Bias, Aux Out, and Deviation will appear on the top display and a prompt identifying the value will appear on the bottom display.

Access the Values

Pressing the display key will cycle through all applicable values (configuration dependent). One minute after the last press of the display key, the display will revert to a configured default display. The default display is configured in the Input 1 Setup Group, and has three selections:

- Active Setpoint (SP)
- Process Variable (PR Y)
- Process Variable with no bottom display prompt (**PR n**).

Exceptions

There are three exceptions to the above rules:

The displays for PID SET, Timer and Setpoint Ramp will appear the same as on a dual display model and, when displaying Timer or Ramp values, the default display switchover feature is disabled.

Auto-only Mode

The single display model is *Auto only* mode. The Auto/Manual key has no effect on controller mode. As a result of this, the Failsafe mode is always non-latching.

While a Failsafe condition exists, the controller output will assume the Failsafe value. When the Failsafe condition goes away, normal automatic operation continues.

Single Display Parameters

Table 4-4 Single Display Parameters

Lower Display Prompt	Upper Display Value	Comments
(blank)	Process Variable	Default selection
PV	Process Variable	Default selection
SP	Local Setpoint #1	Default selection
2SP	Local Setpoint #2	Default selection
RSP	Remote Setpoint	Default selection
OUT	Output	
DEV	Deviation	
2IN	Input #2	
AUX	Aux Output value	
BIA	PD+MR bias value	
PIDS x	Process Variable	Active PID set
RP xxxM	Process Variable	SP Ramp time left
HH.MM or MM.SS	Process Variable	Timer display

4.4 Start Up Procedure for Operation

Table 4-5 Procedure for Starting Up the Controller

Step	Operation	Press	Result
1	Select Manual Mode	MAN/AUTO RESET	Until "M" indicator is ON. The controller is in manual mode.
			N/A for Single Display model.
2	Adjust the Output	[▲] [▼]	To adjust the output value and ensure that the final control element is functioning correctly.
			Upper Display = Pv Value
			Lower Display = OT and the output value in %
3	Tune the Controller	SET UP	Make sure the controller has been configured properly and all the values and selections have been recorder on the Configuration Record Sheet.
			Refer to Tuning Set Up group to ensure that the selections for PB or GAIN, RATE T, and I MIN, or I RPM have been entered.
			Use Accutune to tune the controller; see the procedure in this section.
4	Enter the Local	DISPLAY	Upper Display = Pv Value
	Setpoint		Lower Display = SP and the Local Setpoint Value
		[▲] [▼]	to adjust the local setpoint to the value at which you want the process variable maintained.
			The local setpoint cannot be changed if the Setpoint Ramp function is running.
5	Select Automatic Mode	MAN/AUTO RESET	Until "A" indicator is ON. The controller is in Automatic mode.
			The controller will automatically adjust the output to maintain the process variable at setpoint.
			N/A for Single Display model.

4.5 Setpoints

Introduction

You can configure the following setpoints for the UDC2300 controller.

- A Single Local Setpoint (SP)
- 2 Local Setpoints (SP, 2L)
- a Local Setpoint and a Remote Setpoint (SP, RS)

Switching between setpoints

You can switch Local and Remote setpoints or between two Local setpoints when configured.

ATTENTION The REMOTE SETPOINT value cannot be changed at the keyboard.

Table 4-6 Procedure for Switching Between Setpoints

Step	Operation	Press	Result
1	Select the Setpoint	FUNCTION	To alternately select Local Setpoint 1 (LSP) and the Remote Setpoint (RSP) or switch between the 2 Local Setpoints (LSP and 2L)
			ATTENTION "KEY ERROR" will appear in the lower display, if:
			 the remote setpoint or 2nd local setpoint is not configured as a setpoint source
			 you attempt to change the setpoint while a setpoint ramp is enabled, or
			 if you attempt to change the setpoint with the setpoint select function key disabled.

4.6 Timer

Introduction

The Timer provides a configurable Time-out period of from 0 to 99 hours:59 minutes or 0 to 99 minutes:99 seconds.

Timer "Start" is selectable as either the **RUN/HOLD** key or Alarm 2.

The Timer display can be either "Time Remaining" or "Elapsed Time".

Configuration check

Make sure:

- TIMER is enabled
- A TIMEOUT period has been selected (in hours and minutes or minutes and seconds)
- A TIMER FUNCTION START has been selected (KEY or AL2)
- A TIMER display has been selected (Time remaining or Elapsed time)
- A timer increment selected
- Timer reset selected

Refer to Subsection 3.3 for details.

Viewing Times

The times are viewed on the lower display as follows:

TIME REMAINING will show as a decreasing Hrs:Min value (HH:MM) or Min:Sec

value (MM:SS) plus a *counterclockwise* rotating clock face.

ELAPSED TIME will show as an *increasing* Hrs:Min value(HH:MM) or Min:Sec

value (MM:SS) plus a *clockwise* rotating clock face.

Operation

When the Timer is enabled (**RUN/HOLD** key or ALARM 2), it has exclusive control of Alarm 1 relay.

At "TIME-OUT:

- Alarm 1 is active
- The clock character has stopped moving
- The Time display shows either 00:00 or the time-out period depending on the configuration selection
- The Timer is ready to be reset.

At "RESET":

- Alarm 1 relay is inactive
- The time display shows the time-out period
- The time-out period can be changed at this time using the ▲ or ▼ keys.
- The Timer is ready to be activated.

4.7 Accutune II

Operation

"TUNE" (Accutune II) algorithm provides foolproof, trouble-free on-demand tuning in the UDC2300 controller. No knowledge of the process is required at start-up. The operator simply initiates the tuning while in the automatic mode.

The UDC controller immediately starts controlling to the setpoint while it identifies the process, calculates the tuning constants and enters them into the Tuning group, and begins PID control with the correct tuning parameters. This works with any process, including integrating type processes, and allows retuning at a fixed setpoint.

The tuning sequence will cycle the controller's output two full cycles between 0 % and 100 % (or low and high output limits) while allowing only a very small Process Variable change above and below the SP during each cycle. "TUNE" flashes in the upper display until tuning is completed.

After "TUNE" has been enabled:

 Start Tuning by pushing the AUTOTUNE key while in Automatic control mode.

To abort Accutune and return to the last previous operation (SP or output level), press **MAN-AUTO/RESET** key to abort the Accutune process.

Completing Accutune

When Accutune is complete, the calculated tuning parameters are stored in their proper memory location in the controller, and the controller will control at the local setpoint using the newly calculated tuning constants.

4.8 Fuzzy Overshoot Suppression

Introduction

Fuzzy Overshoot Suppression minimizes Process Variable overshoot following a setpoint change or a process disturbance. This is especially useful in processes which experience load changes or where even a small overshoot beyond the setpoint may result in damage or lost product.

Configuration

To configure this item, refer to Section 3 - Configuration:

Set Up Group "ATUNE"
Function Prompt "FUZZY"
Select "ENAB"(enable) or "DIS" (disable) Use ▲ or ▼.

4.9 Using Two Sets of Tuning Constants

Introduction

You can use two sets of tuning constants for single output types and choose the way they are to be switched. (Does not apply for Duplex control.) See table below.

Table 4-7 Set Up Procedure

Step	Operation	Press	Action
1	Select Tuning Set Up Group	SET UP	until you see TUNING in the Lower Display
2	Select the tuning constants	FUNCTION	to successively display the available constants in the Lower Display. The value is displayed in the Upper Display
3		[▲] [▼]	To change the value of any of the above listed prompts in the lower display.

Switch between two sets via keyboard (without automatic switch-over)

Table 4-8 Procedure for Switching PID SETS from the Keyboard

Step	Operation	Press	Result
1	Select Control Set-up Group	DISPLAY	Until you see: Upper Display = (the PV value)
			Lower Display = PIDS X(X= 1 or 2)
2		[▲] [▼]	To change PID SET 1 to PID SET2 or Vice Versa.
			You can use Accutune on each set.

4.10 Alarms

Introduction

An alarm consists of a relay contact and an operator interface indication. The alarm relay is de-energized if setpoint 1 or setpoint 2 is exceeded.

The alarm relay is energized when the monitored value goes into the allowed region by more than the hysteresis.

The relay contacts can be wired for normally open (NO) energized or normally closed (NC) de-energized using internal jumper placement. See Table 2-3 in the Section 2 – Installation for alarm relay contact information.

There are four alarm setpoints, two for each alarm. The alarm type and state (High or Low) is selected during configuration. There are several alarm types that can be selected for each alarm setpoint.

Alarm Setpoints Display

Table 4-9 Procedure for Displaying Alarm Setpoints

Step	Operation	Press	Action
1	Access the Alarm Set Up group	SET UP	until you see ALARMS in the Lower Display.
2	Access the Alarm Setpoint Values	FUNCTION	to successively display the alarm setpoints and their values.
		[▲] [▼]	to change any alarm setpoint value you select in the upper display.
3	Return to normal operation	DISPLAY	

4.11 Three Position Step Control Algorithm

Introduction

The Three Position Step Control algorithm allows the control of a valve (or other actuator) with an electric motor driven by two controller output relays; one to move the motor upscale, the other to move it downscale, without a feedback slidewire linked to the motor shaft.

Estimated Motor Position

The Three-Position Step control algorithm provides an output display ("OT") which is an estimated motor position since the motor is not using any feedback.

- although this output indication is only accurate to a few percent, it is corrected each time the controller drives the motor to one of its stops (0 % or 100 %).
- it avoids all the control problems associated with the feedback slidewire (wear, dirt, and noise).
- when operating in this algorithm, the estimated "OT" display is shown to the nearest percent (that is, no decimal).

Motor Position Display

Table 4-10 Procedure for Displaying 3Pstep Motor Position

Step	Operation	Press	Result
1	Access the Displays	DISPLAY	Until you see: Upper Display = PV
			Lower Display = OT (The estimated motor position in %)

4.12 Setting a Failsafe Output Value for Restart After a Power Loss

Introduction

If the power to the controller fails and power is reapplied, the controller goes through the power up tests, then goes to a user configured FAILSAFE OUTPUT VALUE.

Set a Failsafe Value

Table 4-11 Procedure for Setting a Failsafe Value

Step	Operation	Press	Result
1	Select Control Set-up Group	SET UP	Until you see: Upper Display = SET
			Lower Display = CONTRL
2	Select Failsafe Function Prompt	FUNCTION	You will see: Upper Display = (range) within the range of the Output 0 to 100 for all output types except 3 Position Step 3 Position Step 0 = motor goes to closed position 100 = motor goes to open position
			Lower Display = FAILSF
3	Select a value	[▲] [▼]	To select a Failsafe output value in the upper display
4	Return to Normal Display	DISPLAY	At power up, the output will go to the value set.

4.13 Setting Failsafe Mode

Introduction

You can set the Failsafe Mode to be Latching or Non-Latching.

Set Failsafe Mode

Table 4-12 Procedure for Setting a Failsafe Mode

	i abie i i i i i i i i i i i i i i i i i i		
Step	Operation	Press	Result
1	Select Control Set-up Group	SET UP	Until you see: Upper Display = SET
			Lower Display = CONTRL
2	Select Failsafe Function Prompt	FUNCTION	You will see: Upper Display = LACH (Controller goes to manual and output goes to Failsafe value) NO L (controller mode does not change and output goes to Failsafe value)
			Lower Display = FSMODE
3	Select a value	[▲] [▼]	To select a Failsafe mode in the upper display.
4	Return to Normal Display	DISPLAY	At power up, the output will go to the value set.

4.14 Entering a Security Code

The level of keyboard lockout may be changed in the Set Up mode. However, knowledge of a security code number (0 to 4095) may be required to change from one level of lockout to another. When a controller leaves the factory, it has a security code of 0, which permits changing from one lockout level to another without entering any other code number.

If you require the use of a security code, select a number from 0001 to 4095 and enter it when the lockout level is configured as NONE. Thereafter, that selected number must be used to change the lockout level from something other than NONE.

CAUTION Write the number on the Configuration Record Sheet in Appendix C so you will have a permanent record.

Table 4-13 Procedure to Enter a Security Code

Step	Operation	Press	Result
1	1 Enter Set Up Mode	SET UP	Upper Display = SET UP
			Lower Display = TUNING
2	2 Select any Set Up Group	FUNCTION	Upper Display = 0
			Lower Display = SECUR
3	Security Code Entry	[▲] [▼]	To enter a four digit number in the upper display (0001 to 4095)
			This will be your security code.

4.15 Lockout Feature

Introduction

The lockout feature in the UDC2300 is used to inhibit changes (via keyboard) of certain functions or parameters by unauthorized personnel.

Lockout levels

There are different levels of Lockout depending on the level of security required. These levels are:

- NONE No Lockout.
- CAL Calibration prompts are locked out.
- CONF Timer, Tuning, SP Ramp, and Accutune are Read/Write. All other Setup groups are Read only. Calibration Group is not available.
- VIEW Timer, Tuning, and SP Ramp are Read/Write. No other parameters are available.
- ALL Timer, Tuning, and SP Ramp are Read only. No other parameters are viewable.

Security Code (See previous section)

Individual key lockout

There are four keys that can be disabled to prevent unauthorized changes to the parameters associated with these keys. First set the "Lock" prompt to NONE.

These keys are:

AUTOTUNE Key	- you can disable the Autotune key at configuration
	Set up, group prompt Tuning", function prompt "A TUNE"
RUN/HOLD Key	- you can disable the Run/Hold key for Set Point
	Programming at configuration Set Up group prompt "Tuning," function prompt "RN HLD"
AUTO/MAN Key	 you can disable the Auto/Manual key at configuration Set Up, group prompt "Tuning", function prompt "AUTOMA"
FUNCTION Key	- you can disable the Set Point Select function key at configuration Set Up group prompt "Tuning," function

See Subsection3.4 - Tuning Parameters Set Up Group prompts to enable or disable these keys.

prompt "SP SEL"

4.16 Background Tests

Introduction

The UDC2300 performs ongoing background tests to verify data and memory integrity. If there is a malfunction, an error message will be displayed (blinking) in the lower display.

In the case of simultaneous malfunctions, the messages will appear in sequence in the lower display. Table 4-14 lists these background tests, the reason for their failure, and how to correct the problem.

Table 4-14 Background Tests

	Table 4-14 Ba	ckground lests
Lower Display	Reason for Failure	How to Correct the Problem
E FAIL	Unable to write to non-volatile memory. Anytime you change a parameter and it is not accepted, you will see E FAIL.	 Check the accuracy of the parameter and reenter. Try to change something in configuration. Run through Read STATUS tests to re-write to EEPROM.
FAILSF	This error message shows whenever the controller goes into a failsafe mode of operation. This will happen if: • RAM test failed • Configuration test failed • Calibration test failed • Burnout configured for none and the input failed.	 Run through STATUS check to determine the reason for the failure. Press the SET UP key until STATUS appears in the lower display. Press the FUNCTION key to see whether the tests pass or fail, then run through the STATUS codes a second time to see if the error cleared.
IN1RNG	Input 1 out of range. The process input is outside the range limits.	 Make sure the range and actuation are configured properly. Check the input source. Restore the factory calibration. (See Section 4.17.) Field calibrate.
IN1_FL	Two consecutive failures of input 1 integration. i.e., cannot make analog to digital conversion. This will happen if: • Upscale or Downscale burnout is selected • Input not configured correctly	 Make sure the actuation is configured correctly. See Section 4 - Configuration. Make sure the input is correct. Check for gross over-ranging. Check S101 jumper position. See Figure 2-1 Jumper Placements Restore factory calibration. See Section 4.17
IN2RNG	Input 2 out of range. The remote input is outside the range limits.	Same as IN1RNG above.
IN2_FL	Two consecutive failures of input 2 integration. i.e., cannot make analog to digital conversion.	Same as IN1FL above.

Lower Display	Reason for Failure	How to Correct the Problem
CNFERR	 PV low limit is > PV high limit SP low limit is > SP high limit Output low limit > Output high limit 	 Check the configuration for each item and reconfigure if necessary.
PV LIM	PV out of range.	Make sure the input signal is correct.
	PV = INP1 x RATIO1+ INP1 BIAS	Make sure the Ratio and Bias settings are correct.
		3. Recheck the calibration. Use Bias of 0.0
RV LIM	The result of the formula shown below	1. Make sure the input signal is correct.
	is beyond the range of the remote variable.	Make sure the Ratio2 and Bias2 settings are correct.
	RV = INP2 X RATIO + BIAS	3. Recheck the calibration. Use a Ratio2 of 1.0 and a Bias2 of 0.0.
SEGERR	Setpoint Program start segment number is less than ending segment number.	 Check SP Program configuration, subsection 3.5 Set up Group SPPROG function prompts "STRSEG" and "ENDSEG".

4.17 Restore Factory Calibration

Introduction

The factory calibration constants for all the input actuation types that can be used with the controller are stored in its nonvolatile memory. Thus, you can quickly restore the "Factory Calibration" for a given input actuation type by simply changing the actuation type to another type and then changing it back to the original type. *Refer to Table 4-15 for procedure.*

ATTENTION: A restored factory calibration overwrites any previous field calibration done for the input and may change the High and Low Range Limits. Be sure to protect any field calibration from accidental overwrites by configuring the appropriate LOCKOUT selection after calibration.

See Section 4.15 for specific instructions to set the lockout.

Table 4-15 Restore Factory Calibration

Step	Operation	Press	Result
1	Set LOCKOUT to NONE	SET UP	until you see: Upper Display = SET UP Lower Display = TUNING
		FUNCTION	Until you see:
			Upper Display = one of the following: NONE – all parameters are read/write CAL – all parameters are read/write except Calibration CONF – configuration parameters are Read Only; no writes permitted VIEW – Tuning and Setpoint Ramp parameters are read/write. No other parameters can be viewed. ALL – Tuning and Setpoint Ramp parameters are available for read only. No other parameters can be viewed. Lower Display = LOCK
		[▲] [▼]	Until NONE is in the upper display
2	Enter INPUT 1 Setup Group	SET UP	until you see: Upper Display = SET UP Lower Display = INPUT 1 or 2
		FUNCTION	until you see: Upper Display = the current selection Lower Display = INxTYP
		[▲] [▼]	to change the current selection to another selection
3	Scroll through Functions	FUNCTION	until the lower display rolls through the rest of the functions and returns to:
			Upper Display = the new selection Lower Display = INxTYP

Step	Operation	Press	Result
		[▲] [▼]	until you change the input selection in the upper display back to the proper selection. You will see:
			Upper Display = Original Input Selection that matches your type of sensor. Lower Display = INxTYP
4	Return to Normal	DISPLAY	to return to Normal operating mode.
	Operation		The factory calibration will be restored. If the problem is not corrected, contact the Honeywell Technical Assistance Center.
			1-800-423-9883 USA and Canada

5 Setpoint Rate/Ramp/Program Operation

5.1 Setpoint Rate

Introduction

When you have configured a SETPOINT RATE, it will apply immediately to local setpoint change.

Configuration check

Make sure:

- SPRATE is enabled
- SPRAMP and SPPROG are disabled
- A Rate Up (EUHRUP) or Rate Down (EUHRDN) value has been configured in Engineering units per hour.

ATTENTION: A value of 0 will imply an immediate change in setpoint, that is, NO RATE applies. See Subsection 3.5 – Configuration group "SPRAMP" for details.)

Operation

When a change to local setpoint is made, this controller will ramp from the original setpoint to the "target" setpoint at the rate specified.

The current setpoint value can be viewed at Sn on the lower display.

Power outages

If power is lost before the "target" setpoint is reached, upon power recovery, the controller powers up with Sn = Current PV value and it automatically "Restarts" from Sn = current PV value up to the original "target" setpoint.

5.2 Setpoint Ramp

Introduction

When you have configured a SETPOINT RAMP, the ramp will occur between the current local setpoint and a final local setpoint over a time interval of from 1 to 255 minutes. You can RUN or HOLD the ramp at any time.

Configuration Check

Make sure

SPRAMP is enabled

- SP RATE and SPPROG are disabled
- A Ramp Time (TIMIN) in minutes has been configured
- A final setpoint value (FINLSP) has been configured. See Subsection 3.5 Configuration group "SPRAMP" for details.

Operation

Running a Setpoint Ramp includes starting, holding, viewing the ramp, ending the ramp and disabling it. See Table 5-1.

Table 5-1 Running A Setpoint Ramp

Step	Operation	Press	Result
1	Select	MAN/AUTO	"A" indicator is on.
	Automatic Mode		Upper Display = Hold and PV value Lower Display = SP and Present value
2	Set Start	DISPLAY	Until start SP value is in lower display
	Setpoint		Upper Display = Hold and PV value Lower Display = SP and start SP value
3	Start the Ramp	RUN/HOLD	You will see Upper Display = Run and a changing PV value Lower Display = SP and a changing SP value increasing or decreasing toward a final SP value
4	Hold/Run the Ramp	RUN/HOLD	This holds the ramp at the current setpoint value. Press again to continue.
5	View the remaining ramp time	DISPLAY	Until you see Upper Display = RUN or HOLD and the PV value Lower Display = RP xx HH.MM (time remaining)
6	End the Ramp		When the final setpoint is reached, "RUN" changes to "HOLD" in the upper display and the controller operates at the new final setpoint.
7	Disable SPRAMP		See Section 3.5 – Configuration group "SPRAMP" for details.

Power Outage

If power is lost during a ramp, upon power-up the controller will be in HOLD and the setpoint value will be the setpoint value prior to the beginning of the setpoint ramp. The ramp is placed in hold at the beginning.

Configure the mode at Set up Group "CONTROL", function prompt "PWRUP". See Section 3.10 – CONTRL GROUP FUNCTION Prompts.

5.3 Setpoint Ramp/Soak Programming

Introduction

Setpoint Ramp/Soak Programming lets you configure six ramp and six soak segments to be stored for use as one program or several small programs. You designate the beginning and end segments to determine where the program is to start and stop.

Review program data and configuration

While the procedure for programming is straightforward, and aided by prompts, we suggest you read "Program Contents". Table 5-2 lists the program contents and an explanation of each to aid you in configuration. Then refer to Subsection 3.5 – Configuration to enable and configure the setpoint program.

NOTE: SPRATE and SPRAMP must be disabled to enable SP PROG (Set Point Programming).

Fill out the worksheet

Refer to the example in Figure 5-1and draw a Ramp/Soak Profile on the worksheet provided in Figure 5-2 and fill in the information for each segment. This will give you a record of how the program was developed.

Operation

Refer to Table 5-3 Run/Monitor the program.

Program Contents

Table 5-2 lists all the program contents and a description of each.

Power outage

ATTENTION If power is lost during a program, upon power-up the controller will be in hold and the setpoint value will be the setpoint value prior to the beginning of the setpoint program. The program is placed in hold at the beginning. The mode will be as configured under "PWR UP" in the "CONTROL" group.

Table 5-2 Program Contents

0	Definition.
Contents	Definition
Ramp Segments	A ramp segment is the time or rate of change it takes to change the setpoint to the next setpoint value in the program.
	 Ramps are odd number segments.
	 Ramps are configured in either Time or Engineering Units per Minute or EU per Hour (see Ramp Unit below).
	ATTENTION Entering "0" will imply an immediate step change in setpoint to the next soak.
Ramp Unit	The Ramp Unit selection determines the engineering units for the ramp segments.
	The selections are:
	 TIME = Hours:Minutes (XX:XX) Range: 0-99 hrs: 0-59 min
	 EU-H = Degrees/Hour OR EU-M = Degrees/Minute (Range – 0-999)
Soak Segments	A Soak Segment is a combination of Soak Setpoint (value) and a Soak Time (duration)
	 Soaks are even number segments.
	 The Soak Setpoint value must be within the setpoint high and low range limits in engineering units.
	 Soak Time is the duration of the soak and is determined in:
	TIME - Hours:Minutes Range = 0-99 hrs:59 min.
Start Segment	The Start Segment number designates the first Ramp segment. Range = 1 to 11
End Segment	The End Segment number designates the number of the last Soak segment. Range = 2 to 12
Recycle number	The Recycle number allows the program to recycle a specified number of times from beginning to end. $Range = 0$ to 99
Guaranteed soak	All soak segments can have a deviation value of from 0 to \pm 99 (specified by SOK DEV) which guarantees that value for that segment time.
	The soak deviation value is the number in engineering units, above or below the setpoint, outside of which the timer halts. The range is 0 to ± 99.
	Soak deviation values >0 guarantee that the soak segment's process variable is within the \pm deviation for the configured soak time. Whenever the \pm deviation is exceeded, soak timing is frozen.
	The guaranteed soaks feature is disabled whenever the deviation value is configured to 0.

Contents	Definition
PV Start	This function determines whether LSP1 or PV is used as the setpoint when the program is initially changed from HOLD to RUN.
	The selections are:
	DISABL = When the program is initially changed from HOLD to RUN the present LSP1 value is captured as the default setpoint. If the program is terminated or the power cycled before the program has completed, the LSP1 is used as the control setpoint. The beginning segment uses this value as the initial ramp setpoint.
	ENABL = When the program is initially changed from HOLD to RUN the present PV value is captured and used as the beginning setpoint value for the ramp segment. If the program is terminated before completion, the setpoint value will revert back to the PV value captured at the initial HOLD to RUN transition. If the power is cycled before program completion, upon power-up the setpoint is set to the PV value at power-up and when the program is restarted that setpoint value is used initially.
Program state	The Program State selection determines whether the program is in the HOLD state or Disabled (DIS) after completion of the program.
Program termination state	The program termination state function determines the status of the controller upon completion of the program. The selections are: LAST = controls to last setpoint
	 FSAF = manual mode and Failsafe output.
Reset Program to Beginning	When enabled, this selection allows you to reset the program to the beginning from the keyboard.

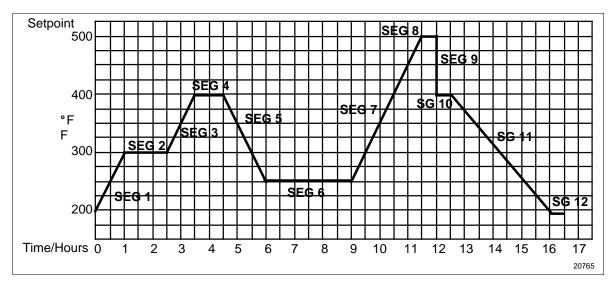


Figure 5-1 Ramp/Soak Profile Example Ramp/Soak Profile Example

Prompt	Function	Segment	Value
STRSEG	Start Seg.		1
ENDSEG	End Seg.		12
RP UNIT	Engr. Unit for Ramp		TIME
PG END	Controller Status		LAST SP
STATE	Controller State at end		HOLD
TO BEGIN	Reset SP Program		DIS
PVSTRT	Program starts at PV value		DIS
RECYCL	Number of Recycles		2
SOKDEV	Deviation Value		0
SG1 RP	Ramp Time	1	1 hr.
SG2 SP	Soak SP	2	300
SG2 TI	Soak Time	2	1hr.:30 min.
SG3 RP	Ramp Time	3	1hr.
SG4 SP	Soak SP	4	400

Prompt	Function	Segment	Value	
SG4 TI	Soak Time	4	1 hr.	
SG5 RP	Ramp Time	5	1hr.:30 min.	
SG6 SP	Soak SP	6	250	
SG6 TI	Soak Time	6	3hr.:0min.	
SG7 RP	Ramp Time	7	2hr.:30min.	
SG8 SP	Soak SP	8	500	
SG8 TI	Soak Time	8	0hr.:30 min.	
SG9 RP	Ramp Time	9	0	
SG10 SP	Soak SP	10	400	
SG10 TI	Soak Time	10	0hr.:30 min.	
SG11 RP	Ramp Time	11	3hr.:30min.	
SG12 SP	Soak SP	12	200	
SG12TI	Soak Time	12	0hr.:30 min.	

Program record sheet

Draw your ramp/soak profile on the record sheet shown in Figure 5-2 and fill in the associated information in the blocks provided. This will give you a permanent record of your program and will assist you when entering the Setpoint data.

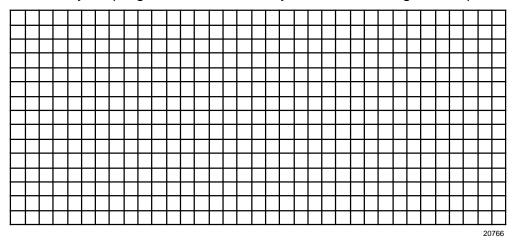
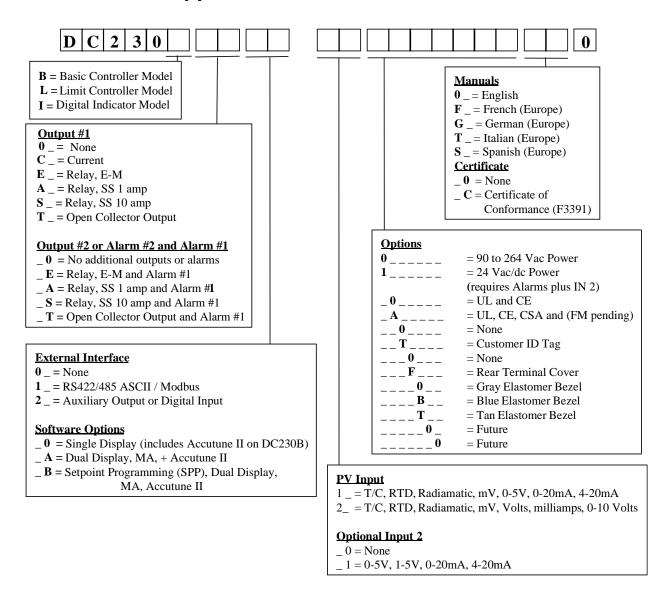


Figure 5-2 Program Record Sheet

Prompt	Function	Segment	Value	Prompt	Function	Segment	Val
STRSEG	Start Seg.			SG4 TI	Soak Time	4	
ENDSEG	End Seg.			SG5 RP	Ramp Time	5	
RP UNIT	Engr. Unit for Ramp			SG6 SP	Soak SP	6	
RECYCL	Number of Recycles			SEG6 TI	Soak Time	6	
SOKDEV	Deviation Value			SG7 RP	Ramp Time	7	
PG END	Controller Status			SG8 SP	Soak SP	8	
STATE	Program Controller State			SG8 TI	Soak Time	8	
TO BEGIN	Reset SP Program			SG9 RP	Ramp Time	9	
PVSTRT	Program starts at PV value			SG10 SP	Soak SP	10	
SG1 RP	Ramp Time	1		SG10 TI	Soak Time	10	
SG2 RP	Soak SP	2		SG11RP	Ramp Time	11	
SG2 TI	Soak Time	2		SG12SP	Soak SP	12	
SG3 RP	Ramp Time	3		SG12TI	Soak Time	12	
SG4 SP	Soak SP	4			•		

Run/Monitor functions

Table 5-3 lists all the functions required to run and monitor the program.


Table 5-3 Run/Monitor Functions

Function	Press	Result	
Set the Local Setpoint	DISPLAY	Upper Display = PV value Lower Display = SP	
	[▲] [▼]	To set the Local Setpoint value to where you want the program to start out.	
Run State	RUN/HOLD	Initiates the setpoint program.	
		"RUN" appears in the upper display indicating that the program is running.	
Hold State	RUN/HOLD	Holds the setpoint program.	
		"HOLD" appears in the upper display indicating that the program is in the HOLD state.	
		The setpoint holds at the current setpoint.	
External Hold		If Remote Switching (Digital Input Option) is present on your controller, contact closure places the controller in the HOLD state, if the setpoint program is running. The "HOLD" in the upper display will be displayed periodically in lower case.	
		ATTENTION The keyboard takes priority over the external switch for the RUN/HOLD function.	
		Contact reopening runs program.	
Viewing the present ramp or soak segment number and time	DISPLAY until you see	Upper Display = PV value Lower Display = XXHH.MM	
number and time		Time remaining in the SEGMENT in hours and minutes. $XX = 1$ to 12	
Viewing the number of cycles left in the	until you see	Upper Display = PV value Lower Display = REC_XX	
program		Number of cycles remaining in the setpoint program. $X = 0$ to 99	
End Program		When the final segment is completed, the "RUN" in the upper display either changes to "HOLD" (if configured for HOLD state), or disappears (if configured for disable of setpoint programming).	
		The controller either operates at the last setpoint in the program or goes into manual mode/Failsafe output.	
Disable Program		See Section 3.5 – Configuration Group "SPPROG" for details.	

6 Appendix A - Environmental and Operating Conditions

Operating Limits	Ambient Temperature: 32 °F to 131 °F (0 °C to 55 °C)
	Relative Humidity: 5 % to 90 % RH up to 104 °F (40 °C)
	Vibration: Frequency: 0 to 200 Hz Acceleration: 0.6g
	Mechanical Shock: Acceleration: 5g Duration: 30 ms
	Power: 90 Vac to 264 Vac, 50/60 Hz (CSA models rated to 250 Vac maximum)
	Power Consumption: 12 VA maximum
Accuracy	± 0.25 % of span typical ± 1 digit for display 15-bit resolution typical
CE Conformity Special Conditions (Europe)	Shielded twisted-pair cables are required for all analog I/O, process variable, RTD, thermocouple, dc Millivolts, low level signal, 4-20 mA, digital I/O, and computer interface circuits.
	Refer to 51-52-05-01, How to Apply Digital Instrumentation in Severe Electrical Noise Environments, for additional information.

7 Appendix B - Model Selection Guide

8 Appendix C - Configuration Record Sheet

Enter the value or selection for each prompt on this sheet so you will have a record of how your controller was configured.

Group Prompt	Function Prompt	Value or Selection	Factory Setting	Group Prompt	Function Prompt	Value or Selection	Factory Setting
TIMER	TIMER PERIOD START L DISP RESET INCRMT		DIS 0:01 KEY TREM KEY MIN	ATUNE	FUZZY TUNE AT ERR		DIS TUNE
TUNING	PB or GAIN RATE T I MIN or I RPM MANRST PB2 or GAIN 2 RATE2T I2 MIN or I2 RPM CYCT1 or CT1 X3 CYC2T2 or CT2 X3 SECUR LOCK AUTOMA A TUNE RN HLD SP SEL		1.0 0.00 1.0 1.0 0.00 0.00 1.0 20 20 20 CAL ENAB ENAB ENAB	ALGOR	CTRALG OUTALG 4-20RG RLY TY		PIDA (MOXL) 100 127
SPRAMP	SPRAMP ATI MIN FINLSP SPRATE EUHRUP EUHRDN SPPROG		DIS 3 1000 DIS 0 0 DIS	INPUT1	DECIMAL UNITS IN1TYP XMITR1 IN1 HI IN1 LO RATIO1 BIAS 1 RILTR1 BRNOUT EMIS FREQ DISPLY LNGUAG		8888 DegF KH LIN 2400 0 1.00 0.0 1.0 UP 1.0 60 SP ENGL

Configuration Record Sheet continued on next page

Group Prompt	Function Prompt	Value or Selection	Factory Setting	Group Prompt	Function Prompt	Value or Selection	Factory Setting
INPUT2	IN2TYP LIN IN2 HI IN2 LO RATIO2 BIAS 2 FILTR2		1-5V LIN 2400 0 1.00 0.0 1.0	СОМ	ComSTA ComADR SDENAB SHDTIM PARITY BAUD WS_FLT TX_DLY SDMODE SHDSP UNITS CSRATO CSP_BI LOOPBACK		Disable 0 Enable 0 Odd 9600 FP_B 1 Last LSP PCT 1.0 0 Disable
CONTRL	PIDSET SW VAL LSP'S RSPSRC SP TRK PWR UP PWROUT SP Hi SP Lo ACTION OUT Hi OUT Lo D BAND HYST FAILSF FSMODE PBorGN MINRPM		ONE 0.00 ONE NONE NONE MAN LAST 2400 0 REV 100 0 2.0 0.5 0.0 NOL GAIN MIN	ALARMS	A1S1VA A1S2VA A2S1VA A2S2VA A1S1TY A1S1TY A2S1TY A2S2TY A1S1HL A1S1EV A1S2HL A1S2EV A2S1HL A2S1EV A2S2HL A2S2EV ALHYST ALARM1 BLOCK		90 90 90 NONE NONE NONE HIGH BEGN HIGH BEGN HIGH BEGN O.0 NOL DIS
OPTIONS	AUXOUT 0 PCT 100 PCT DIG IN DIG COM		DIS 0 100 NONE DIS				

Honeywell

Sensing and Control

Honeywell 11 West Spring Street Freeport, IL 61032