


### Технические данные

Топочный автомат для газовых горелок



DLG 974 Mod.01 DLG 976 Mod.01 DLG 976 Mod.02 DLG 976 Mod.04



Для 1- или 2-ступенчатых газовых горелок с наддувом и комбинированных (газ/дизельное топливо)

Возможный датчик пламени:

- Зонд ионизации
- Инфракрасный датчик IRD 1020.1
- Ультрафиолетовый датчик UVD 971

#### Введение

газовых горелок, а также комбинированных (газ/дизельное топливо). Топочный автомат проверен и сертифицирован согласно соответствующим европейским стандартам. Возможно применение на стационарных воздушных теплогенераторах в соответствии с DIN 4794. С помощью программы, управляемой микропроцессором, задается предельно стабильное время, независимое от колебаний напряжения в сети, температуры окружающей среды и/или циклов включения. Встроенная информационная система способствует не только непрерывному наблюдению происходящих событий (особенно важно для контроля фазы запуска), но также информирует о причине возможного аварийного отключения. Причина неисправности сохраняется в памяти прибора и может быть восстановлена даже после отключения электропитания.

Топочный автомат DLG 974/976 контролирует мощность

Топочный автомат рассчитан на максимальную безопасность в случае колебания напряжения. Если напряжение в сети падает ниже допустимого уровня, работа прекращается и топочный автомат предотвращает повторение процедуры запуска. Таким образом, безопасность системы не подвергается риску при падении напряжения в сети. Защита от низкого напряжения работает не только во время запуска, а постоянно во время работы горелки.

#### Конструктивные особенности

Микропроцессор, электронные компоненты, исполнительное реле и усилитель сигнала пламени расположены на двух платах. Они вместе с автоматикой аварийного отключения и перезапуска хорошо защищены огнестойким корпусом. На верхней стороне корпуса находится кнопка аварийного отключения/перезапуска со встроенным светодиодом для отображения информации, а также центральный крепежный винт.

Цоколь топочного автомата S98 оборудован резервными и дополнительными контактами и обеспечивает при множестве кабельных вводов гибкость электропроводки.

#### Возможные типы

DLG 974 Mod.01 1-ступенчатый режим DLG 976 Mod.01 2-ступенчатый режим

DLG 976 Mod.04 2-ступенчатый режим

замена для Siemens LGB21.130A27

#### Технические данные

220 / 240 B (-15...+10%) Рабочее напряжение

50 / 60 Гц (±5%)

110 / 120 B (-15...+10%) ипи

60 Гц (±5%)

Предохранитель на входе 10 А быстродействующий,

6 А с задержкой срабатывания

Энергопотребление приблизительно 12 ВА

Максимальная нагрузка на клеммы:

- Кл. 3 трансформатор

1.5 A, cosφ 0.2 полжига - Кл. 4 электродвигатель 2.0 A, cosφ 0.4

- Кл. 5+6 электромагнитные

клапаны 1.0 A, cosφ 0.4

- Кл. В индикация

1.0 A, cosφ 0.4 неисправности Всего 5.0 A, cosφ 0.4

макс. 20 А в течение 0.5 с

#### Аварийное отключение при исчезновении пламени во время работы

1 рабочий контакт 4 А, 230 В Реле давления воздуха

Чувствительность 1.0 µA

Минимальный необходимый 1.5 µA ток ионизации

Чувствительность к

постороннему свету  $0.4 \mu A$ 

зонд - заземление Изоляция зонда ионизации выше 50 МΩ

зонд - заземление

Емкость рассеяния менее 1000 пФ

< 3 M

Длина кабеля

Датчики пламени

IRD 1020.1 боковое или осевое видение пламени

**UVD 971** осевое видение пламени

Вес, включая цоколь 190 г

Положение при установке любое **IP 40** Класс защиты

Допустимые климатические

условия для прибора и

влажность макс. 95% при 30°C датчика пламени

Допустимый диапазон

температуры

- Эксплуатация -20°C ... +60°C -20°C ... +80°C - Хранение

Образование льда, воздействие

воды и конденсация не допускается

Утвержден в соответствии

с европейскими стандартами EN 298 и EN 230, а также

другие соответствующие директивы и стандарты

Код идентифик. по EN 298 **FTLLXN** 

### Основные отличия других моделей от базового исполнения Mod.01

#### DLG 976 Mod.02

 Аварийное отключение при исчезновении пламени во время работы (блокировка).

|                       | DLG 976 |        |  |
|-----------------------|---------|--------|--|
|                       | Mod.02  | Mod.01 |  |
| Время предварительной | 60 c    | 24 c   |  |
| вентиляции            |         | 210    |  |

#### Таблица временных интервалов (с)

| Модель | Макс. время  | Время      | Время перед | Время после | Контроль     | Предохрани- | Время          |
|--------|--------------|------------|-------------|-------------|--------------|-------------|----------------|
|        | срабатывания | предвари-  | поджигом    | поджига     | постороннего | тельное     | переключения   |
|        | для реле     | тельной    |             |             | света        | время       | на 2-ю ступень |
|        | давления     | вентиляции |             |             |              |             | "только для    |
|        | воздуха      |            |             |             |              |             | DLG 976"       |
|        | tlw          | tv1        | tvz         | tn          | tf           | ts          | tv2            |
| 01     | 60           | 24         | 3           | 2           | 5            | 3           | 12.5           |
| 02     | 60           | 60         | 3           | 2           | 5            | 3           | 12.5           |
| 04     | 60           | 5          | 2           | 2.5         | 4.5          | 3           | 8              |

#### Особенности применения

#### 1. Информационная система

Информационная система управляется микропроцессором и показывает все события, происходящие с топочным автоматом горелки и контролем пламени. Она постоянно информирует, в какой фазе программы находится прибор. Кроме отслеживания программы система также позволяет определять ошибки при запуске без дополнительных контрольных приборов. Автоматическая диагностика очень важна для облегчения работ по техническому обслуживанию и способствует сокращению затрат. Анализ причины неисправности может быть сделан на текущем этапе или, если это невозможно, позднее, т.к. причина аварийного отключения сохраняется в долговременной памяти топочного автомата.

Информационная система связана с внешней средой через светодиодный индикатор (используемый световой код подобен азбуке Морзе). Сообщения передаются оптически через мигающий светодиод. С помощью дополнительного терминала (опция) сообщения могут быть записаны и отражены в легко читаемой форме.

### 1.1. Индикация последовательности операций и причины неисправности

Встроенный микропроцессор контролирует не только последовательность операций, но также информационную систему. Отдельные фазы последовательности программы показываются с помощью светового кода. Можно выделить следующие световые коды:

| Сообщение                                                          | Световой код |
|--------------------------------------------------------------------|--------------|
| Ожидание ответа от реле давления воздуха                           | 11.          |
| Время предварительной вентиляции tv1                               | 111.         |
| Время перед поджигом tvz                                           | 1111.        |
| Предохранительное время ts                                         | <b>■</b> 1.  |
| Запаздывание 2-й ступени tv2                                       |              |
| Работа                                                             | I _          |
| Низкое напряжение                                                  | _            |
| Неисправен внутренний предохранитель > неисправен топочный автомат | I ■_         |

#### Обозначение

I = короткий сигнал

■ = длинный сигнал

- . = короткая пауза
- \_ = длинная пауза

#### 1.2. Определение причины неисправности

В случае неисправности постоянно горит светодиод. Каждые 10 секунд лампа гаснет и для определения причины неисправности высвечивается световой код. Последовательность сигналов повторяется до перезапуска топочного автомата.

Последовательность сигналов:

| Фаза непрерывного | Светодиод       | Световой | Светодиод       |
|-------------------|-----------------|----------|-----------------|
| свечения          | погашен         | код      | погашен         |
|                   |                 |          |                 |
| в течение 10 с    | в течение 0,6 с |          | в течение 1,2 с |
| Определение причи | ны неисправно   | сти      |                 |

| Определение причины неисправности                                                       |                 |                                                                          |  |  |
|-----------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------|--|--|
| Сообщение о неисправности                                                               | Световой<br>код | Возможная<br>неисправность                                               |  |  |
| Предохранительное время блокировки                                                      | 11111           | Пламя не образовалось в течение предохранительного времени блокировки    |  |  |
| Посторонний свет                                                                        | 11111           | Посторонний свет во время фазы контроля, датчик может быть неисправен    |  |  |
| Контакт реле давления воздуха в замкнутом положении                                     |                 | Залипание контакта реле<br>давления воздуха                              |  |  |
| Время ожидания ответа<br>от реле давления<br>воздуха                                    | 111 11          | Контакт реле давления воздуха не замкнут в течение определенного времени |  |  |
| Контакт реле давления воздуха в разомкнутом положении                                   | 1111            | Контакт реле давления воздуха разомкнут во время запуска или работы      |  |  |
| Исчезновение пламени                                                                    | 11111           | Исчезновение пламени<br>во время работы                                  |  |  |
| Световой код для ручного                                                                | о аварийного    | отключения                                                               |  |  |
| Ручное/внешнее аварийное отключение (см. также п.3 "Аварийное отключение и перезапуск") | 1111            | 11111                                                                    |  |  |

#### 2. Контроль пламени

Применяются следующие типы датчиков пламени:

- ионизационный зонд, термостойкий материал, хорошо изолирован (материал и изоляция аналогичны электроду поджига).
- инфракрасный датчик пламени тип IRD 1020.1 с крепежным фланцем М 93 или УФ датчик пламени UVD 971.

Обнаружение пламени с помощью ионизационного зонда возможно только в связи с напряжением в сети, которое обеспечивает соединение нейтраль/земля.
При подключении IRD 1020.1 или UVD 971 обратите внимание на правильный монтаж электропроводки.

#### 2.1 Контроль постороннего света

Контроль постороннего света осуществляется в конце времени предварительной вентиляции, см. данные таблицы временных интервалов.

#### 3. Аварийное отключение и перезапуск

Топочный автомат может быть заблокирован или деблокирован двумя путями:

#### Внутренний

Путем нажатия на встроенную в корпус кнопку можно привести прибор в исходное положение в случае аварийного отключения, т.е. снова его запустить.

#### Внешний

Вместо встроенной кнопки перезапуска можно использовать внешнюю кнопку, клемма 9 соединена с А (см. блок-схему соединения).

Если кнопку (внутреннюю или внешнюю) во время обычного режима работы или во время запуска нажимать в течение более чем 3 секунд и затем отпустить, топочный автомат перейдет в положение блокировки.



#### Примечание

Топочный автомат может быть заблокирован или перезапущен, если на него подается напряжение.

#### 4. Защита от низкого напряжения

при номинальном напряжении 220/240 В (110/120 В)

Для осуществления запуска напряжение в сети должно быть более 187  $B_{_{3\varphi\varphi}}$  (94  $B_{_{3\varphi\varphi}}$ ). Напряжение в сети проверяется не только при запуске, но также постоянно во время работы. Падение напряжения при запуске или во время эксплуатации ниже 160  $B_{_{3\varphi\varphi}}$  (80  $B_{_{3\varphi\varphi}}$ ) вызывает предохранительное отключение топочного автомата, он переходит в режим ожидания. Последующее увеличение напряжения выше 187  $B_{_{3\varphi\varphi}}$  (94  $B_{_{3\varphi\varphi}}$ ) приводит к автоматическому запуску топочного автомата.

#### Безопасность

Конструкция и программный цикл топочных автоматов DLG 974/976 соответствуют действующим стандартам и предписаниям (см. также "Технические данные").

#### 6. Монтаж и электрическое подключение

Цоколь:

- 3 контакта заземления с дополнительным контактом для заземления горелки
- 3 нейтральных контакта с постоянным внутренним соединением к нейтральному контакту 8
- 2 независимых резервных контакта (S1 и S2)
- стандартные дополнительные контакты A, B и C (12-контактный цоколь S98)
- 2 скользящие пластины и 2 легко выбиваемых отверстия плюс 2 выбиваемых отверстия в дне цоколя для облегчения электропроводки.



#### Примечание

Для бесперебойной работы главный нейтральный соединенный контакт в цоколе должен быть полностью затянут. Винты контактов находятся в свободном состоянии. Для соединения кабеля с контактом необходимо закрепить винт.

Общая информация: Топочный автомат и датчики пламени не должны подвергаться сильной вибрации.

### **Инструкции по установке и техническому** обслуживанию

#### 1. Важные указания

- Топочные автоматы должны устанавливаться только квалифицированными специалистами. Необходимо соблюдать соответствующие местные предписания.
- При вводе в эксплуатацию следует внимательно проверить электрическое подключение согласно схеме. Неправильное подключение может повредить топочный автомат и подвергнуть опасности установку.
- Номинал предохранителя не должен выходить за пределы, указанные в "Технических данных". При несоблюдении инструкции в результате короткого замыкания возможны серьезные последствия для топочного автомата и установки.
- По технике безопасности каждые 24 часа должно производиться, по крайней мере, одно контролируемое отключение.
- Установка или демонтаж топочного автомата должны производиться только при отключенном напряжении.
- Топочный автомат является предохранительным устройством и его вскрытие недопустимо!

#### 2. Контроль функционирования

С целью безопасности проверка системы контроля пламени должна осуществляться при вводе установки в эксплуатацию, а также после проведения сервисных работ или длительного отключения.

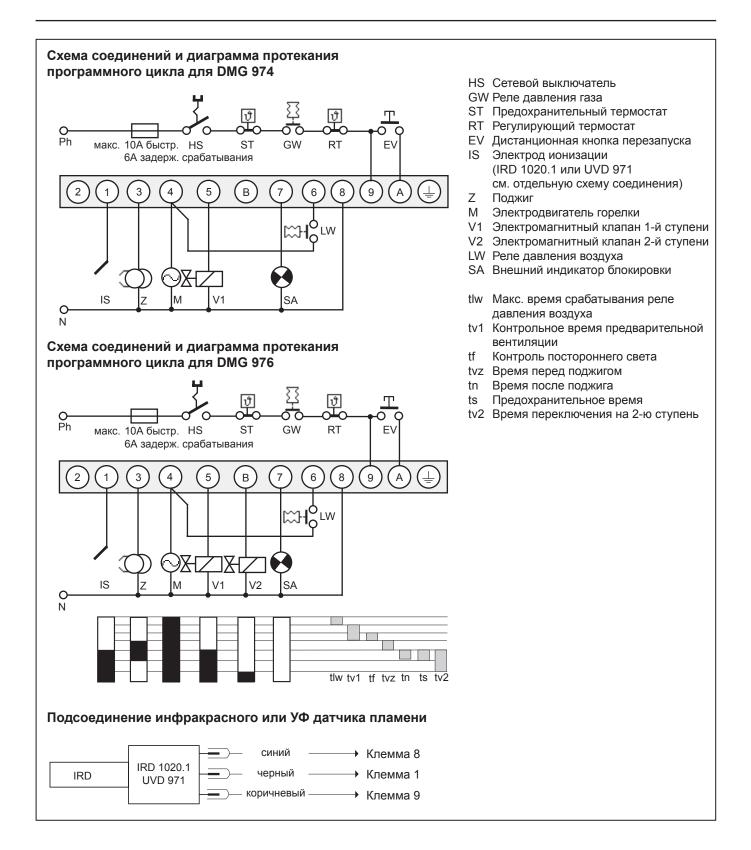
- а) Запуск с закрытым газовым краном
  - В конце предохранительного времени топочный автомат должен перейти в положение блокировки!
- б) Нормальный запуск; когда горелка находится в рабочем положении, закрыть газовый кран
  - После исчезновения пламени топочный автомат должен перейти в положение блокировки.
- в) Нормальный запуск; во время предварительной вентиляции или во время работы разомкнуть контакт реле давления воздуха
  - Топочный автомат должен немедленно перейти в положение блокировки
- г) Перед запуском замкнуть реле давления воздуха
  - Электродвигатель вентилятора вращается примерно 2-3 секунды, затем следует аварийное отключение. После 10 секунд топочный автомат делает вторую попытку запуска (электродвигатель включается примерно на 2-3 секунды). Если контакт реле давления воздуха (LW) все еще находится в замкнутом положении (например, при залипании контактов), происходит стандартная блокировка. Если контакт реле давления воздуха (LW) за это время разомкнулся (например, при остановке электродвигателя), следует обычная процедура запуска.

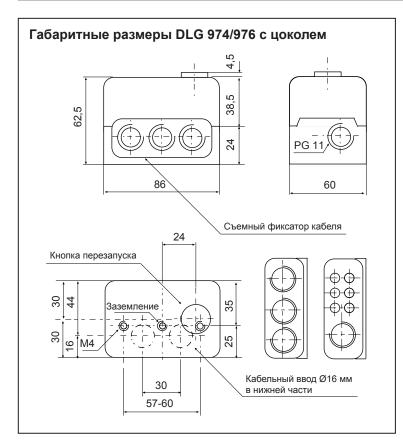
#### 3. Обнаружение неисправности

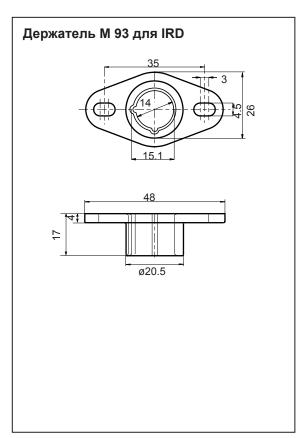
Встроенная информационная система облегчает устранение неисправностей, произошедших во время запуска или при работе горелки.

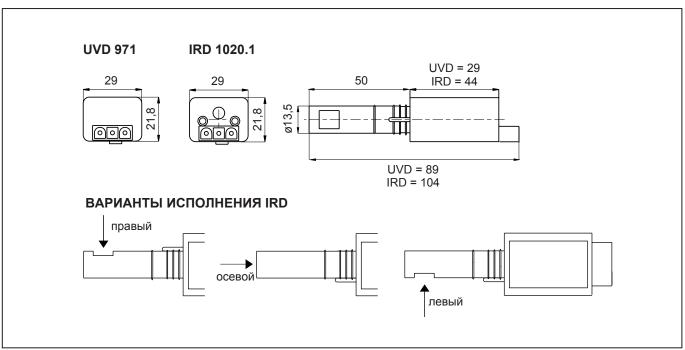
Список возможных сообщений при аварийном отключении горелки см. в разделе "Особенности применения" пункт 1.2.

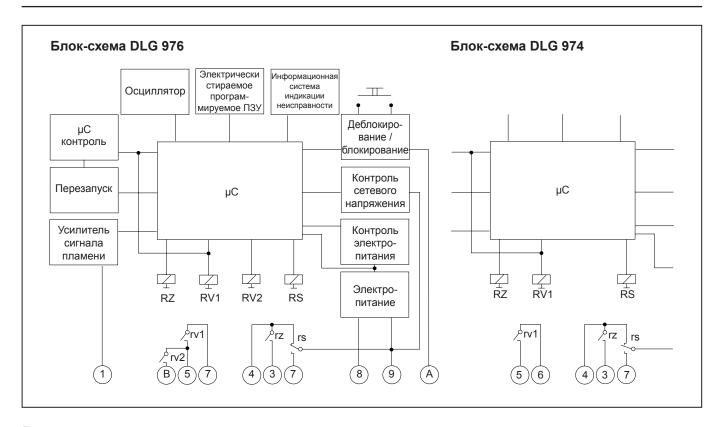



#### Примечание:


Топочный автомат находится в положении блокировки, а также причина аварийного отключения отображается вплоть до перезапуска топочного автомата, либо внутреннего, либо внешнего (см. п. 3 "Аварийное отключение и перезапуск").


Отделение топочного автомата от цоколя или прекращение подачи электроэнергии не может вывести прибор из положения блокировки. Электродвигатель вентилятора включается через 2-3 секунды после подачи напряжения перед тем, как топочный автомат снова перейдет в положение блокировки и вновь показывается последняя неисправность.


| По об                                                                                                                                         | D                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Проблема</b> Горелка не работает                                                                                                           | - Отключен термостат - Неисправна электропроводка - Напряжение в сети < 187 В (< 80 В) - Клемма А постоянно под напряжением (например, клемма А используется как поддерживающая клемма)                            |
| Электродвигатель вентилятора/подогреватель форсунки запускается на короткий период времени, топочный автомат переходит в положение блокировки | <ul> <li>Контакт реле давления воздуха<br/>не находится в разомкнутом</li> </ul>                                                                                                                                   |
| Топочный автомат блокируется во время предварительной вентиляции                                                                              | - Контакт реле давления воздуха не замкнут в течение 60 секунд - Разомкнулся контакт реле давления воздуха                                                                                                         |
| Топочный автомат блокируется в конце предохранительного времени                                                                               | - Разомкнут контакт реле давления воздуха - Сигнал пламени (посторонний свет)                                                                                                                                      |
| Горелка запускается, пламя не образуется после предохранительного времени, топочный автомат переходит в положение блокировки                  | - Датчик пламени определяет<br>посторонний свет                                                                                                                                                                    |
| Горелка запускается, образуется пламя, после предохранительного времени топочный автомат переходит в положение блокировки                     | - Отсутствие или слабый сигнал пламени (сбой пламени, плохая изоляция электрода ионизации, плохое подсоединение замыкания на корпус) - Недостаточный поток света на инфракрасный датчик - Слишком низкая настройка |


чувствительности для инфракрасного датчика











#### Данные для заказа

| <b>Наименование</b><br>Топочный автомат: | <b>Текст заказа</b> DLG 974 Mod.01 DLG 976 Mod.01 DLG 976 Mod.02 DLG 976 Mod.04 | <b>Артикул №</b> 0364001 0366001 0366002 0366004 |
|------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|
| Цоколь                                   | S98 12-контактный                                                               | 75310                                            |
| Вставная пластина:                       | PG-пластина                                                                     | 70502                                            |
|                                          | Пластина фиксации кабеля                                                        | 70503                                            |
| Датчик пламени:                          | Инфракрасный датчик пламени IRD 1020.1 правый синий                             | 16531                                            |
|                                          | Инфракрасный датчик пламени IRD 1020.1 правый белый                             | 1653104                                          |
|                                          | Инфракрасный датчик пламени IRD 1020.1 осевой синий                             | 16532                                            |
|                                          | Инфракрасный датчик пламени IRD 1020.1 D осевой синий                           | 16552                                            |
|                                          | Инфракрасный датчик пламени IRD 1020.1 осевой белый                             | 1653204                                          |
|                                          | Инфракрасный датчик пламени IRD 1020.1 осевой синий 115 В                       | 16572                                            |
|                                          | Инфракрасный датчик пламени IRD 1020.1 левый синий                              | 16533                                            |
|                                          | Ультрафиолетовый датчик пламени UVD 971                                         | 16722                                            |
| Крепежный фланец                         | Держатель M 93 для IRD 1020.1                                                   | 59093                                            |
|                                          | Держатель M 74 для UVD                                                          | 59074                                            |
| Соединительный кабель                    | Штекерного типа, 3-жильный кабель, 0.6 м с наконечниками                        | 7236001                                          |

Вышеупомянутые данные для заказа относятся к стандартной конструкции.

Программа продаж включает также специальные исполнения.